mlx/python/tests/test_reduce.py

159 lines
5.8 KiB
Python

# Copyright © 2023 Apple Inc.
import unittest
from itertools import combinations, permutations
import mlx.core as mx
import mlx_tests
import numpy as np
class TestReduce(mlx_tests.MLXTestCase):
def test_axis_permutation_sums(self):
for shape in [(5, 5, 1, 5, 5), (65, 65, 1, 65)]:
with self.subTest(shape=shape):
x_npy = (np.random.randn(*shape) * 128).astype(np.int32)
x_mlx = mx.array(x_npy)
for t in permutations(range(len(shape))):
with self.subTest(t=t):
y_npy = np.transpose(x_npy, t)
y_mlx = mx.transpose(x_mlx, t)
for n in range(1, len(shape) + 1):
for a in combinations(range(len(shape)), n):
with self.subTest(a=a):
z_npy = np.sum(y_npy, axis=a)
z_mlx = mx.sum(y_mlx, axis=a)
mx.eval(z_mlx)
self.assertTrue(np.all(z_npy == z_mlx))
def test_expand_sums(self):
x_npy = np.random.randn(5, 1, 5, 1, 5, 1).astype(np.float32)
x_mlx = mx.array(x_npy)
for m in range(1, 4):
for ax in combinations([1, 3, 5], m):
shape = np.array([5, 1, 5, 1, 5, 1])
shape[list(ax)] = 5
shape = shape.tolist()
with self.subTest(shape=shape):
y_npy = np.broadcast_to(x_npy, shape)
y_mlx = mx.broadcast_to(x_mlx, shape)
for n in range(1, 7):
for a in combinations(range(6), n):
with self.subTest(a=a):
z_npy = np.sum(y_npy, axis=a) / 1000
z_mlx = mx.sum(y_mlx, axis=a) / 1000
mx.eval(z_mlx)
self.assertTrue(
np.allclose(z_npy, np.array(z_mlx), atol=1e-4)
)
def test_dtypes(self):
int_dtypes = [
"int8",
"int16",
"int32",
"uint8",
"uint16",
"uint32",
"int64",
"uint64",
"complex64",
]
float_dtypes = ["float32"]
for dtype in int_dtypes + float_dtypes:
with self.subTest(dtype=dtype):
x = np.random.uniform(0, 2, size=(3, 3, 3)).astype(getattr(np, dtype))
y = mx.array(x)
for op in ("sum", "prod", "min", "max"):
with self.subTest(op=op):
np_op = getattr(np, op)
mlx_op = getattr(mx, op)
for axes in (None, 0, 1, 2, (0, 1), (0, 2), (1, 2), (0, 1, 2)):
with self.subTest(axes=axes):
if op in ("sum", "prod"):
r_np = np_op(
x, axis=axes, dtype=(getattr(np, dtype))
)
else:
r_np = np_op(x, axis=axes)
r_mlx = mlx_op(y, axis=axes)
mx.eval(r_mlx)
self.assertTrue(np.allclose(r_np, r_mlx, atol=1e-4))
def test_arg_reduce(self):
dtypes = [
"uint8",
"uint16",
"uint32",
"uint64",
"int8",
"int16",
"int32",
"int64",
"float16",
"float32",
]
for dtype in dtypes:
with self.subTest(dtype=dtype):
data = np.random.rand(10, 12, 13).astype(getattr(np, dtype))
x = mx.array(data)
for op in ["argmin", "argmax"]:
for axis in range(3):
for kd in [True, False]:
a = getattr(mx, op)(x, axis, kd)
b = getattr(np, op)(data, axis, keepdims=kd)
self.assertEqual(a.tolist(), b.tolist())
for op in ["argmin", "argmax"]:
a = getattr(mx, op)(x, keepdims=True)
b = getattr(np, op)(data, keepdims=True)
self.assertEqual(a.tolist(), b.tolist())
a = getattr(mx, op)(x)
b = getattr(np, op)(data)
self.assertEqual(a.item(), b)
def test_edge_case(self):
x = (mx.random.normal((100, 1, 100, 100)) * 128).astype(mx.int32)
x = x.transpose(0, 3, 1, 2)
y = x.sum((0, 2, 3))
mx.eval(y)
z = np.array(x).sum((0, 2, 3))
self.assertTrue(np.all(z == y))
def test_sum_bool(self):
x = np.random.uniform(0, 1, size=(10, 10, 10)) > 0.5
y = mx.array(x)
npsum = x.sum().item()
mxsum = y.sum().item()
self.assertEqual(npsum, mxsum)
def test_many_reduction_axes(self):
def check(x, axes):
expected = x
for ax in axes:
expected = mx.sum(expected, axis=ax, keepdims=True)
out = mx.sum(x, axis=axes, keepdims=True)
self.assertTrue(mx.array_equal(out, expected))
x = mx.random.randint(0, 10, shape=(4, 4, 4, 4, 4))
check(x, (0, 2, 4))
x = mx.random.randint(0, 10, shape=(4, 4, 4, 4, 4, 4, 4))
check(x, (0, 2, 4, 6))
x = mx.random.randint(0, 10, shape=(4, 4, 4, 4, 4, 4, 4, 4, 4))
check(x, (0, 2, 4, 6, 8))
x = mx.random.randint(0, 10, shape=(4, 4, 4, 4, 4, 4, 4, 4, 4, 128))
x = x.transpose(1, 0, 2, 3, 4, 5, 6, 7, 8, 9)
check(x, (1, 3, 5, 7, 9))
if __name__ == "__main__":
mlx_tests.MLXTestRunner(failfast=True)