mlx/tests/scheduler_tests.cpp
Awni Hannun c4230747a1
redesign for faster cpu/gpu synch (#1869)
* redesign for faster cpu/gpu synch

* load + more async CPU

* use command encoder API and move more ops to use it

* make fence back-end generic + CPU only fence

* faster build

* fix async eval

* fixes + handle temporaries

* fix / improve cpu conv

* remove unused status, fix siblings

* fix extensions

* fix

* fix no cpu build

* format

* comments

* fix perf regression, remove unecessary abort

* fix events, task limit cpu

* fix waiting

* fix donation / temporaries in normalization
2025-03-06 19:23:38 -08:00

122 lines
3.0 KiB
C++

// Copyright © 2023 Apple Inc.
#include "doctest/doctest.h"
#include "mlx/mlx.h"
#include "mlx/scheduler.h"
using namespace mlx::core;
TEST_CASE("test stream management") {
auto s1 = default_stream(default_device());
CHECK_EQ(s1.device, default_device());
auto s2 = new_stream(default_device());
CHECK_EQ(s2.device, default_device());
CHECK_NE(s1, s2);
// Check that default streams have the correct devices
if (metal::is_available()) {
auto s_gpu = default_stream(Device::gpu);
CHECK_EQ(s_gpu.device, Device::gpu);
} else {
CHECK_THROWS_AS(default_stream(Device::gpu), std::invalid_argument);
}
auto s_cpu = default_stream(Device::cpu);
CHECK_EQ(s_cpu.device, Device::cpu);
s_cpu = new_stream(Device::cpu);
CHECK_EQ(s_cpu.device, Device::cpu);
if (metal::is_available()) {
auto s_gpu = new_stream(Device::gpu);
CHECK_EQ(s_gpu.device, Device::gpu);
} else {
CHECK_THROWS_AS(new_stream(Device::gpu), std::invalid_argument);
}
}
TEST_CASE("test asynchronous launch") {
auto s1 = default_stream(Device::cpu);
auto s2 = new_stream(Device::cpu);
// Make sure streams execute asynchronously
int x = 1;
auto p1 = std::make_shared<std::promise<void>>();
auto p2 = std::make_shared<std::promise<void>>();
auto f1 = p1->get_future().share();
auto f2 = p2->get_future().share();
auto fn1 = [&x, p = std::move(p1)]() {
x++;
p->set_value();
};
auto fn2 = [&x, p = std::move(p2), f = std::move(f1)]() {
f.wait();
x *= 5;
p->set_value();
};
// fn2 is launched first and is waiting on fn1 but since
// they are on different streams there is no deadlock.
scheduler::enqueue(s2, std::move(fn2));
scheduler::enqueue(s1, std::move(fn1));
f2.wait();
CHECK_EQ(x, 10);
}
TEST_CASE("test stream placement") {
auto s1 = default_stream(Device::cpu);
auto s2 = new_stream(Device::cpu);
{
// Wait on stream 1
auto p = std::make_shared<std::promise<void>>();
auto f = p->get_future().share();
scheduler::enqueue(s1, [f = std::move(f)]() { f.wait(); });
// Do some work on stream 2
auto x = zeros({100}, float32, s2);
auto y = ones({100}, float32, s2);
auto z = add(x, y, s2);
eval(z);
p->set_value();
}
{
// Wait on stream 1
auto p = std::make_shared<std::promise<void>>();
auto f = p->get_future().share();
scheduler::enqueue(s1, [f = std::move(f)]() { f.wait(); });
// Do some work on stream 2
auto fn = [&s2](array a) { return add(a, add(a, a, s2), s2); };
auto x = zeros({100}, s2);
// The whole vjp computation should happen
// on the second stream otherwise this will hang.
auto [out, dout] = vjp(fn, x, ones({100}, s2));
// The whole jvp computation should happen on the
// second stream.
std::tie(out, dout) = jvp(fn, x, ones({100}, s2));
eval(out, dout);
p->set_value();
}
}
TEST_CASE("test scheduler races") {
auto x = zeros({1});
auto y = zeros({100});
eval(x, y);
auto a = exp(x);
eval(a);
a = exp(x);
for (int i = 0; i < 10000; ++i) {
y = exp(y);
}
eval(a, y);
}