mlx/benchmarks/python/packed_qmm_bench.py
2024-12-16 21:49:14 -08:00

75 lines
1.8 KiB
Python

import argparse
import math
import mlx.core as mx
from time_utils import time_fn
B = 1024
D = 1024
M = 4 * D
group_size = 64
bits = 4
dtype = mx.float16
loops = 10
def qmm_(x, wq1, wq2, q_type):
for i in range(loops):
x = mx.quantized_matmul(
x,
*wq1,
group_size=group_size,
bits=bits,
quantization_type=q_type,
)
x = mx.quantized_matmul(
x,
*wq2,
group_size=group_size,
bits=bits,
quantization_type=q_type,
)
return x
def affine_qmm(x, wq1, wq2):
return qmm_(x, wq1, wq2, "affine")
def affine_packed_qmm(x, wq1, wq2):
return qmm_(x, wq1, wq2, "affine-packed")
def time_qmm():
mx.random.seed(3)
x = mx.random.normal(shape=(B, D)).astype(dtype)
w1 = mx.random.normal(shape=(M, D)).astype(dtype)
wq1 = mx.quantize(w1, group_size=group_size, bits=bits, quantization_type="affine")
w2 = mx.random.normal(shape=(D, M)).astype(dtype)
wq2 = mx.quantize(w2, group_size=group_size, bits=bits, quantization_type="affine")
mx.eval(x, wq1, wq2)
time_fn(affine_qmm, x, wq1, wq2)
def time_packed_qmm():
mx.random.seed(3)
x = mx.random.normal(shape=(B, D)).astype(dtype)
w1 = mx.random.normal(shape=(M, D)).astype(dtype)
wq1 = mx.quantize(
w1, group_size=group_size, bits=bits, quantization_type="affine-packed"
)
w2 = mx.random.normal(shape=(D, M)).astype(dtype)
wq2 = mx.quantize(
w2, group_size=group_size, bits=bits, quantization_type="affine-packed"
)
mx.eval(x, wq1, wq2)
time_fn(affine_packed_qmm, x, wq1, wq2)
if __name__ == "__main__":
for b in [2, 4, 8]:
bits = b
print(f"Bits {bits}:")
time_qmm()
time_packed_qmm()