mlx/mlx/backend/no_metal/primitives.cpp
Brian Keene 0787724c44
Fast Inference SDPA op (#735)
* Fast Inference SDPA op

Implements metal shaders for:

o = mx.fast_inference_sdpa(queries, keys, values, scale, mask)

Supports fp16, fp32 dtypes; assumes d_k = 128.

Generic op support / prompt encoding supported via mlx primitives.
Metal implementation is for the inference use case only.

Majority of performance benefits appears to results from GQA & reduced
bandwidth requirements; there is approximate performance parity for the
MHA use case (from some measurements on M3 Max).

* Flush shared memory to zero before unprotected reads for (scores @ values)

* Move to fast:: namespace, address reviewer comments

... also attempt to revert formatter auto-change for files not relevant
to this change

* Shared memory flush to top of kernel

* Resolve compiler warnings

* Update python/src/fast.cpp

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Update python/src/fast.cpp

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Update python/src/fast.cpp

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Update python/src/fast.cpp

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Update docstring per PR feedback

* Softmax in higher precision, ...

* route to fallback for more use cases - batch size > 1, head_dim other
  than 128, etc.
* Address linux build failure
* Address other reviewer comments

* Remove extraneous eval_cpu function per review

---------

Co-authored-by: Atila Orhon <64497909+atiorh@users.noreply.github.com>
Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
Co-authored-by: atila <atiorh@icloud.com>
2024-03-04 21:06:11 -08:00

106 lines
2.0 KiB
C++

// Copyright © 2023-2024 Apple Inc.
#include "mlx/primitives.h"
#include "mlx/fast_primitives.h"
#define NO_GPU_MULTI(func) \
void func::eval_gpu( \
const std::vector<array>& inputs, std::vector<array>& outputs) { \
throw std::runtime_error(#func " has no GPU implementation."); \
}
#define NO_GPU(func) \
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
throw std::runtime_error(#func " has no GPU implementation."); \
}
namespace mlx::core {
NO_GPU(Abs)
NO_GPU(Add)
NO_GPU(AddMM)
NO_GPU(Arange)
NO_GPU(ArcCos)
NO_GPU(ArcCosh)
NO_GPU(ArcSin)
NO_GPU(ArcSinh)
NO_GPU(ArcTan)
NO_GPU(ArcTanh)
NO_GPU(ArgPartition)
NO_GPU(ArgReduce)
NO_GPU(ArgSort)
NO_GPU(AsType)
NO_GPU(AsStrided)
NO_GPU(Broadcast)
NO_GPU(Ceil)
NO_GPU_MULTI(Compiled)
NO_GPU(Concatenate)
NO_GPU(Convolution)
NO_GPU(Copy)
NO_GPU(Cos)
NO_GPU(Cosh)
NO_GPU_MULTI(CustomVJP)
NO_GPU_MULTI(Depends)
NO_GPU(Divide)
NO_GPU_MULTI(DivMod)
NO_GPU(Remainder)
NO_GPU(Equal)
NO_GPU(Erf)
NO_GPU(ErfInv)
NO_GPU(Exp)
NO_GPU(FFT)
NO_GPU(Floor)
NO_GPU(Full)
NO_GPU(Gather)
NO_GPU(Greater)
NO_GPU(GreaterEqual)
NO_GPU(Less)
NO_GPU(LessEqual)
NO_GPU(Load)
NO_GPU(Log)
NO_GPU(Log1p)
NO_GPU(LogicalNot)
NO_GPU(LogicalAnd)
NO_GPU(LogicalOr)
NO_GPU(LogAddExp)
NO_GPU(Matmul)
NO_GPU(Maximum)
NO_GPU(Minimum)
NO_GPU(Multiply)
NO_GPU(Negative)
NO_GPU(NotEqual)
NO_GPU(Pad)
NO_GPU(Partition)
NO_GPU(Power)
NO_GPU_MULTI(QRF)
NO_GPU(QuantizedMatmul)
NO_GPU(RandomBits)
NO_GPU(Reduce)
NO_GPU(Reshape)
NO_GPU(Round)
NO_GPU(Scan)
NO_GPU(Scatter)
NO_GPU(Select)
NO_GPU(Sigmoid)
NO_GPU(Sign)
NO_GPU(Sin)
NO_GPU(Sinh)
NO_GPU(Slice)
NO_GPU(Softmax)
NO_GPU(Sort)
NO_GPU_MULTI(Split)
NO_GPU(Square)
NO_GPU(Sqrt)
NO_GPU(StopGradient)
NO_GPU(Subtract)
NO_GPU(Tan)
NO_GPU(Tanh)
NO_GPU(Transpose)
namespace fast {
NO_GPU_MULTI(RoPE)
NO_GPU(ScaledDotProductAttention)
} // namespace fast
} // namespace mlx::core