mlx/python/tests/test_fast_sdpa.py
Brian Keene 0787724c44
Fast Inference SDPA op (#735)
* Fast Inference SDPA op

Implements metal shaders for:

o = mx.fast_inference_sdpa(queries, keys, values, scale, mask)

Supports fp16, fp32 dtypes; assumes d_k = 128.

Generic op support / prompt encoding supported via mlx primitives.
Metal implementation is for the inference use case only.

Majority of performance benefits appears to results from GQA & reduced
bandwidth requirements; there is approximate performance parity for the
MHA use case (from some measurements on M3 Max).

* Flush shared memory to zero before unprotected reads for (scores @ values)

* Move to fast:: namespace, address reviewer comments

... also attempt to revert formatter auto-change for files not relevant
to this change

* Shared memory flush to top of kernel

* Resolve compiler warnings

* Update python/src/fast.cpp

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Update python/src/fast.cpp

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Update python/src/fast.cpp

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Update python/src/fast.cpp

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Update docstring per PR feedback

* Softmax in higher precision, ...

* route to fallback for more use cases - batch size > 1, head_dim other
  than 128, etc.
* Address linux build failure
* Address other reviewer comments

* Remove extraneous eval_cpu function per review

---------

Co-authored-by: Atila Orhon <64497909+atiorh@users.noreply.github.com>
Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
Co-authored-by: atila <atiorh@icloud.com>
2024-03-04 21:06:11 -08:00

104 lines
3.3 KiB
Python

import math
import unittest
import mlx.core as mx
import mlx_tests
import numpy as np
# SDPA for MHA (n_heads == n_kv_heads)
def mlx_primitives_sdpa(q, k, v, scale):
p = (q * scale) @ k.transpose(0, 1, 3, 2)
scores = mx.softmax(p.astype(mx.float32), axis=-1).astype(p.dtype)
return scores @ v
# SDPA for GQA (n_heads > n_kv_heads, n_kv_heads > 1, n_heads % n_kv_heads == 0)
def mlx_primitives_sdpa_with_gqa(q, k, v, scale):
n_repeats = q.shape[1] // k.shape[1]
# borrowing kv cache tiling from mlx-examples/llms/mistral/mistral.py
n_heads = q.shape[1]
B = q.shape[0]
L = k.shape[2]
def repeat(a):
a = mx.concatenate([mx.expand_dims(a, 2)] * n_repeats, axis=2)
return a.reshape([B, n_heads, L, -1])
k, v = map(repeat, (k, v))
return mlx_primitives_sdpa(q, k, v, scale)
class TestFastInferenceSDPA(mlx_tests.MLXTestCase):
@property
def dtypes(self):
return ["float32", "float16"] if mx.metal.is_available() else ["float32"]
def test_fast_inference_sdpa(self):
# Not yet supported:
# * K pre-transposed in kernel, V pre-transposed in kernel
np.random.seed(0)
L = 43
R = 1
Dk = 128
scale = float(1.0 / np.sqrt(128.0))
q_npy = np.random.normal(0.0, 1.0, (1, 32, R, Dk)).astype(np.float32)
k_npy = np.random.normal(0.0, 1.0, (1, 32, L, Dk)).astype(np.float32)
v_npy = np.random.normal(0.0, 1.0, (1, 32, L, Dk)).astype(np.float32)
q_mlx = mx.array(q_npy)
k_mlx = mx.array(k_npy)
v_mlx = mx.array(v_npy)
reference = mlx_primitives_sdpa(q_mlx, k_mlx, v_mlx, scale)
o_mlx = mx.fast.scaled_dot_product_attention(
q_mlx, k_mlx, v_mlx, scale=scale, mask=None
)
self.assertListEqual(list(reference.shape), list(o_mlx.shape))
self.assertTrue(mx.allclose(o_mlx, reference, atol=1e-4))
B = 1
H = 32
for SEQUENCE_LENGTH in [1, 7, 9, 32, 63, 67, 129, 400, 2000]:
for DO_GQA in [0, 1]:
for DTYPE in [np.float32, np.half]:
n_kv_heads = 8 if DO_GQA else 32
q_npy = np.random.normal(0.0, 1.0, (B, H, R, Dk)).astype(DTYPE)
k_npy = np.random.normal(
0.0, 1.0, (B, n_kv_heads, SEQUENCE_LENGTH, Dk)
).astype(DTYPE)
v_npy = np.random.normal(
0.0, 1.0, (B, n_kv_heads, SEQUENCE_LENGTH, Dk)
).astype(DTYPE)
q_mlx = mx.array(q_npy)
k_mlx = mx.array(k_npy)
v_mlx = mx.array(v_npy)
reference = mlx_primitives_sdpa_with_gqa(q_mlx, k_mlx, v_mlx, scale)
o_mlx = mx.fast.scaled_dot_product_attention(
q_mlx, k_mlx, v_mlx, scale=scale
)
self.assertListEqual(list(reference.shape), list(o_mlx.shape))
rtol = 1e-5
atol = 1e-1
if SEQUENCE_LENGTH > 500:
rtol = 1e-2
if DTYPE == np.half:
rtol = 1e-2
self.assertTrue(mx.allclose(o_mlx, reference, rtol=rtol, atol=atol))
if __name__ == "__main__":
unittest.main(failfast=True)