mlx/python/mlx/nn
Franck Verrot 7df3f792a2
Ensure Conv2D and Conv3D's kernel sizes aren't trimmed (#1852)
Before the change, this snippet:

```
print(nn.Conv1d(1, 32, 3, padding=1))
print(nn.Conv2d(1, 32, (3, 3), padding=1))
print(nn.Conv3d(1, 32, (3, 3, 3), padding=1))
```

would output:

```
Conv1d(1, 32, kernel_size=3, stride=1, padding=1, dilation=1, groups=1, bias=True)
Conv2d(1, 32, kernel_size=(3,), stride=(1, 1), padding=(1, 1), dilation=1, groups=1, bias=True)
Conv3d(1, 32, kernel_size=(3, 3), stride=(1, 1, 1), padding=(1, 1, 1), dilation=1, bias=True)
```

After the change, the output will be:

```
Conv1d(1, 32, kernel_size=3, stride=1, padding=1, dilation=1, groups=1, bias=True)
Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), dilation=1, groups=1, bias=True)
Conv3d(1, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), dilation=1, bias=True)
```
2025-02-10 06:27:01 -08:00
..
layers Ensure Conv2D and Conv3D's kernel sizes aren't trimmed (#1852) 2025-02-10 06:27:01 -08:00
__init__.py Common neural network initializers nn.initializers (#456) 2024-01-23 06:47:20 -08:00
init.py catch stream errors earlier to avoid aborts (#1801) 2025-01-27 14:05:43 -08:00
losses.py Some fixes to typing (#1371) 2024-08-28 11:16:19 -07:00
utils.py Data parallel helper (#1407) 2024-09-16 18:17:21 -07:00