mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 09:21:16 +08:00

* cosine similarity loss --------- Co-authored-by: Awni Hannun <awni@apple.com> * Docstring nits
305 lines
11 KiB
Python
305 lines
11 KiB
Python
# Copyright © 2023 Apple Inc.
|
|
|
|
import unittest
|
|
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
import mlx_tests
|
|
import numpy as np
|
|
|
|
|
|
class TestLosses(mlx_tests.MLXTestCase):
|
|
def test_cross_entropy(self):
|
|
logits = mx.array([[0.0, -float("inf")], [-float("inf"), 0.0]])
|
|
targets = mx.array([0, 1])
|
|
|
|
# Test with reduction 'none'
|
|
losses_none = nn.losses.cross_entropy(logits, targets, reduction="none")
|
|
expected_none = mx.array([0.0, 0.0])
|
|
self.assertTrue(mx.array_equal(losses_none, expected_none))
|
|
|
|
# Test with reduction 'mean'
|
|
losses_mean = nn.losses.cross_entropy(logits, targets, reduction="mean")
|
|
expected_mean = mx.mean(expected_none)
|
|
self.assertEqual(losses_mean, expected_mean)
|
|
|
|
# Test with reduction 'sum'
|
|
losses_sum = nn.losses.cross_entropy(logits, targets, reduction="sum")
|
|
expected_sum = mx.sum(expected_none)
|
|
self.assertEqual(losses_sum, expected_sum)
|
|
|
|
# Test cases with weights and no label smoothing
|
|
logits = mx.array([[2.0, -1.0], [-1.0, 2.0]])
|
|
targets = mx.array([0, 1])
|
|
weights = mx.array([1.0, 2.0])
|
|
|
|
# Reduction 'none'
|
|
losses_none = nn.losses.cross_entropy(
|
|
logits,
|
|
targets,
|
|
weights=weights,
|
|
reduction="none",
|
|
)
|
|
expected_none = mx.array([0.04858735, 0.0971747]) # Calculated losses
|
|
self.assertTrue(
|
|
np.allclose(losses_none, expected_none, atol=1e-5),
|
|
"Test case failed for cross_entropy loss --reduction='none' --weights=[1.0, 2.0]",
|
|
)
|
|
|
|
# Reduction 'mean'
|
|
losses_mean = nn.losses.cross_entropy(
|
|
logits,
|
|
targets,
|
|
weights=weights,
|
|
reduction="mean",
|
|
)
|
|
expected_mean = mx.mean(expected_none)
|
|
self.assertTrue(
|
|
np.allclose(losses_mean, expected_mean, atol=1e-5),
|
|
"Test case failed for cross_entropy loss --reduction='mean' --weights=[1.0, 2.0]",
|
|
)
|
|
|
|
# Reduction 'sum'
|
|
losses_sum = nn.losses.cross_entropy(
|
|
logits,
|
|
targets,
|
|
weights=weights,
|
|
reduction="sum",
|
|
)
|
|
expected_sum = mx.sum(expected_none)
|
|
self.assertTrue(
|
|
np.allclose(losses_sum, expected_sum, atol=1e-5),
|
|
"Test case failed for cross_entropy loss --reduction='sum' --weights=[1.0, 2.0]",
|
|
)
|
|
|
|
# Test case with equal weights and label smoothing > 0
|
|
logits = mx.array(
|
|
[[0, 0.2, 0.7, 0.1, 0], [0, 0.9, 0.2, 0.2, 1], [1, 0.2, 0.7, 0.9, 1]]
|
|
)
|
|
target = mx.array([2, 1, 0])
|
|
|
|
losses_none = nn.losses.cross_entropy(
|
|
logits, target, label_smoothing=0.3, reduction="none"
|
|
)
|
|
expected_none = mx.array([1.29693, 1.38617, 1.48176])
|
|
self.assertTrue(
|
|
mx.allclose(expected_none, losses_none),
|
|
"Test case failed for cross_entropy --label_smoothing=0.3 --reduction='none'",
|
|
)
|
|
|
|
expected_mean = mx.mean(expected_none)
|
|
losses_mean = nn.losses.cross_entropy(
|
|
logits, target, label_smoothing=0.3, reduction="mean"
|
|
)
|
|
self.assertTrue(
|
|
mx.allclose(losses_mean, expected_mean),
|
|
"Test case failed for cross_entropy --label_smoothing=0.3 --reduction='mean'",
|
|
)
|
|
|
|
expected_sum = mx.sum(expected_none)
|
|
losses_sum = nn.losses.cross_entropy(
|
|
logits, target, label_smoothing=0.3, reduction="sum"
|
|
)
|
|
self.assertTrue(
|
|
mx.allclose(losses_sum, expected_sum),
|
|
"Test case failed for cross_entropy --label_smoothing=0.3 --reduction='sum'",
|
|
)
|
|
|
|
def test_l1_loss(self):
|
|
predictions = mx.array([0.5, 0.2, 0.9, 0.0])
|
|
targets = mx.array([0.5, 0.2, 0.9, 0.0])
|
|
|
|
# Expected result
|
|
expected_none = mx.array([0, 0, 0, 0]).astype(mx.float32)
|
|
expected_sum = mx.sum(expected_none)
|
|
expected_mean = mx.mean(expected_none)
|
|
|
|
losses = nn.losses.l1_loss(predictions, targets, reduction="none")
|
|
self.assertTrue(
|
|
mx.array_equal(losses, expected_none),
|
|
"Test failed for l1_loss --reduction='none'",
|
|
)
|
|
|
|
losses = nn.losses.l1_loss(predictions, targets, reduction="sum")
|
|
self.assertTrue(mx.array_equal(losses, expected_sum))
|
|
|
|
losses = nn.losses.l1_loss(predictions, targets, reduction="mean")
|
|
self.assertTrue(mx.array_equal(losses, expected_mean))
|
|
|
|
def test_mse_loss(self):
|
|
predictions = mx.array([0.5, 0.2, 0.9, 0.0])
|
|
targets = mx.array([0.7, 0.1, 0.8, 0.2])
|
|
|
|
expected_none = mx.array([0.04, 0.01, 0.01, 0.04])
|
|
expected_mean = mx.mean(expected_none)
|
|
expected_sum = mx.sum(expected_none)
|
|
|
|
# Test with reduction 'none'
|
|
losses_none = nn.losses.mse_loss(predictions, targets, reduction="none")
|
|
self.assertTrue(
|
|
np.allclose(losses_none, expected_none, 1e-5),
|
|
"Test case failed for mse_loss --reduction='none'",
|
|
)
|
|
|
|
# Test with reduction 'mean'
|
|
losses_mean = nn.losses.mse_loss(predictions, targets, reduction="mean")
|
|
self.assertEqual(
|
|
losses_mean,
|
|
expected_mean,
|
|
"Test case failed for mse_loss --reduction='mean'",
|
|
)
|
|
|
|
# Test with reduction 'sum'
|
|
losses_sum = nn.losses.mse_loss(predictions, targets, reduction="sum")
|
|
self.assertEqual(
|
|
losses_sum, expected_sum, "Test case failed for mse_loss --reduction='sum'"
|
|
)
|
|
|
|
def test_smooth_l1_loss(self):
|
|
predictions = mx.array([1.5, 2.5, 0.5, 3.5])
|
|
targets = mx.array([1.0, 2.0, 0.5, 2.5])
|
|
beta = 1.0
|
|
|
|
# Expected results
|
|
expected_none = mx.array([0.125, 0.125, 0.0, 0.5])
|
|
expected_sum = mx.sum(expected_none)
|
|
expected_mean = mx.mean(expected_none)
|
|
|
|
# Test with reduction 'none'
|
|
loss_none = nn.losses.smooth_l1_loss(
|
|
predictions, targets, beta, reduction="none"
|
|
)
|
|
self.assertTrue(
|
|
mx.array_equal(loss_none, expected_none),
|
|
"Test case failed for smooth_l1_loss --reduction='none'",
|
|
)
|
|
|
|
# Test with reduction 'sum'
|
|
loss_sum = nn.losses.smooth_l1_loss(predictions, targets, beta, reduction="sum")
|
|
self.assertEqual(
|
|
loss_sum,
|
|
expected_sum,
|
|
"Test case failed for smooth_l1_loss --reduction='sum'",
|
|
)
|
|
|
|
# Test with reduction 'mean'
|
|
loss_mean = nn.losses.smooth_l1_loss(
|
|
predictions, targets, beta, reduction="mean"
|
|
)
|
|
self.assertEqual(
|
|
loss_mean,
|
|
expected_mean,
|
|
"Test case failed for smooth_l1_loss --reduction='mean'",
|
|
)
|
|
|
|
def test_nll_loss(self):
|
|
logits = mx.array([[0.0, -float("inf")], [-float("inf"), 0.0]])
|
|
targets = mx.array([0, 1])
|
|
|
|
# Test with reduction 'none'
|
|
losses_none = nn.losses.nll_loss(logits, targets, reduction="none")
|
|
expected_none = mx.array([0.0, 0.0])
|
|
self.assertTrue(mx.array_equal(losses_none, expected_none))
|
|
|
|
# Test with reduction 'mean'
|
|
losses_mean = nn.losses.nll_loss(logits, targets, reduction="mean")
|
|
expected_mean = mx.mean(expected_none)
|
|
self.assertEqual(losses_mean, expected_mean)
|
|
|
|
# Test with reduction 'sum'
|
|
losses_sum = nn.losses.nll_loss(logits, targets, reduction="sum")
|
|
expected_sum = mx.sum(expected_none)
|
|
self.assertEqual(losses_sum, expected_sum)
|
|
|
|
def test_kl_div_loss(self):
|
|
p_logits = mx.log(mx.array([[0.5, 0.5], [0.8, 0.2]]))
|
|
q_logits = mx.log(mx.array([[0.5, 0.5], [0.2, 0.8]]))
|
|
|
|
# Test with reduction 'none'
|
|
losses_none = nn.losses.kl_div_loss(p_logits, q_logits, reduction="none")
|
|
expected_none = mx.array([0.0, 0.831777])
|
|
self.assertTrue(mx.allclose(losses_none, expected_none))
|
|
|
|
# Test with reduction 'mean'
|
|
losses_mean = nn.losses.kl_div_loss(p_logits, q_logits, reduction="mean")
|
|
expected_mean = mx.mean(expected_none)
|
|
self.assertTrue(mx.allclose(losses_mean, expected_mean))
|
|
|
|
# Test with reduction 'sum'
|
|
losses_sum = nn.losses.kl_div_loss(p_logits, q_logits, reduction="sum")
|
|
expected_sum = mx.sum(expected_none)
|
|
self.assertTrue(mx.allclose(losses_sum, expected_sum))
|
|
|
|
def test_triplet_loss(self):
|
|
anchors = mx.array([[1, 2, 3], [1, 2, 3]])
|
|
positives = mx.array([[4, 5, 6], [0, -1, 2]])
|
|
negatives = mx.array([[7, 8, 9], [3, 2, 3]])
|
|
|
|
# Test with reduction 'none'
|
|
losses_none = nn.losses.triplet_loss(
|
|
anchors, positives, negatives, reduction="none"
|
|
)
|
|
expected_none = mx.array([0, 2.31662])
|
|
self.assertTrue(mx.allclose(losses_none, expected_none))
|
|
|
|
# Test with reduction 'mean'
|
|
losses_mean = nn.losses.triplet_loss(
|
|
anchors, positives, negatives, reduction="mean"
|
|
)
|
|
expected_mean = mx.mean(expected_none)
|
|
self.assertTrue(mx.allclose(losses_mean, expected_mean))
|
|
|
|
# Test with reduction 'sum'
|
|
losses_sum = nn.losses.triplet_loss(
|
|
anchors, positives, negatives, reduction="sum"
|
|
)
|
|
expected_sum = mx.sum(expected_none)
|
|
self.assertTrue(mx.allclose(losses_sum, expected_sum))
|
|
|
|
def test_hinge_loss(self):
|
|
inputs = mx.ones((2, 4))
|
|
targets = mx.zeros((2, 4))
|
|
loss = nn.losses.hinge_loss(inputs, targets, reduction="mean")
|
|
self.assertEqual(loss, 1.0)
|
|
|
|
def test_huber_loss(self):
|
|
inputs = mx.ones((2, 4))
|
|
targets = mx.zeros((2, 4))
|
|
loss = nn.losses.huber_loss(inputs, targets, reduction="mean")
|
|
self.assertEqual(loss, 0.5)
|
|
|
|
def test_log_cosh_loss(self):
|
|
inputs = mx.ones((2, 4))
|
|
targets = mx.zeros((2, 4))
|
|
loss = nn.losses.log_cosh_loss(inputs, targets, reduction="mean")
|
|
self.assertAlmostEqual(loss.item(), 0.433781, places=6)
|
|
|
|
def test_cosine_similarity_loss(self):
|
|
embeddings1 = mx.array([[0.5, 0.5, 0.2, 0.9], [0.1, 0.3, 0.5, 0.5]])
|
|
embeddings2 = mx.array([[0.6, 0.4, 0.3, 0.8], [0.2, 0.5, 0.6, 0.4]])
|
|
|
|
# Test with reduction 'none'
|
|
losses_none = nn.losses.cosine_similarity_loss(
|
|
embeddings1, embeddings2, reduction="none"
|
|
)
|
|
expected_none = mx.array([0.985344, 0.961074])
|
|
self.assertTrue(mx.allclose(losses_none, expected_none))
|
|
|
|
# Test with reduction 'mean'
|
|
losses_mean = nn.losses.cosine_similarity_loss(
|
|
embeddings1, embeddings2, reduction="mean"
|
|
)
|
|
expected_mean = mx.mean(expected_none)
|
|
self.assertTrue(mx.allclose(losses_mean, expected_mean))
|
|
|
|
# Test with reduction 'sum'
|
|
losses_sum = nn.losses.cosine_similarity_loss(
|
|
embeddings1, embeddings2, reduction="sum"
|
|
)
|
|
expected_sum = mx.sum(expected_none)
|
|
self.assertTrue(mx.allclose(losses_sum, expected_sum))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|