mlx/benchmarks/python/einsum_bench.py
Awni Hannun baf9fa5f42
Einsum (#1269)
* einsum initial

* fix comma break

* sum axis was wrong

* small cleanups

* python binding

* changed bindings to resemble numpy

* remove todo comment

* comment changes

* add count of operands/inputs

* fail fast if operands list is empty

* ignore comma if no output

* einsum path matching numpy

* getting somewhere with path

* remove print

* it passes the first test

* moved einsum tests to seperate file

* seperated einsum path

* moved einsum naive

* remove space from equation

* fast fail if no operands passed

* update tests and remove printf

* small cleanup

* some more cleanups

* removed python helper file

* ack

* utilize std for finding min in vector

* duplicate def

* remove the tuple as it was unreadable

* moved einsum_naive back to ops

* remaining isn't needed

* avoid creating another set

* cleanup

* greedy path, start of naive einsum

* more einsum

* fix some bugs

* some more fixes, tests pass

* benchmark

* some simplify

* fix einsum and test

Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>

* add a bunch more tests and fix a bunch more bugs

* some docs nits

---------

Co-authored-by: dc-dc-dc <dgcruz983@gmail.com>
Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2024-07-25 09:36:44 -07:00

85 lines
2.5 KiB
Python

# Copyright © 2024 Apple Inc.
import time
import mlx.core as mx
import numpy as np
def timeit(fn, its=100, args=[]):
for _ in range(5):
fn(*args)
tic = time.perf_counter()
for _ in range(its):
fn(*args)
toc = time.perf_counter()
return 1e3 * (toc - tic) / its
def time_little_einsum_path():
subscripts = "ik,kj->ij"
x = mx.ones((32, 32))
y = mx.ones((32, 32))
mx_time = timeit(mx.einsum_path, args=(subscripts, x, y))
x = np.array(x)
y = np.array(y)
np_time = timeit(np.einsum_path, args=(subscripts, x, y))
print("Timing little einsum path...")
print(f"MLX ... {mx_time:.3f} ms")
print(f"NumPy... {np_time:.3f} ms")
def time_big_einsum_path():
chars = list("abcdefgh")
char_to_dim = {c: v for v, c in enumerate(chars)}
num_inputs = 10
inputs = []
subscripts = []
for _ in range(num_inputs):
subscript = np.random.choice(chars, size=5, replace=False).tolist()
subscripts.append("".join(subscript))
inputs.append(np.ones(list(char_to_dim[c] for c in subscript)))
subscripts = ",".join(subscripts)
np_time = timeit(np.einsum_path, args=(subscripts, *inputs))
inputs = [mx.array(x) for x in inputs]
mx_time = timeit(mx.einsum_path, args=(subscripts, *inputs))
print("Timing big einsum path...")
print(f"MLX ... {mx_time:.3f} ms")
print(f"NumPy... {np_time:.3f} ms")
def time_attention():
def regular_attention(x):
# shape [batch, sequence, num_heads, head_dim]
queries, keys, values = x, x, x
scores = queries.transpose(0, 2, 1, 3) @ keys.transpose(0, 2, 3, 1)
scores = mx.softmax(scores, axis=-1)
output = (scores @ values.transpose(0, 2, 1, 3)).swapaxes(1, 2)
mx.eval(output)
def einsum_attention(x):
# shape [batch, sequence, num_heads, head_dim]
queries, keys, values = x, x, x
scores = mx.einsum("itjk,iujk->ijtu", queries, keys)
scores = mx.softmax(scores, axis=-1)
output = mx.einsum("ijtu,iujk->itjk", scores, values)
mx.eval(output)
x = mx.random.uniform(shape=(8, 512, 32, 128))
regular_time = timeit(regular_attention, args=(x,))
ein_time = timeit(einsum_attention, args=(x,))
print("Timing einsum attention...")
print(f"Regular ... {regular_time:.3f} ms")
print(f"Einsum ... {ein_time:.3f} ms")
if __name__ == "__main__":
time_little_einsum_path()
time_big_einsum_path()
time_attention()