mirror of
				https://github.com/ml-explore/mlx.git
				synced 2025-10-31 16:21:27 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			1042 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1042 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright © 2023 Apple Inc.
 | |
| 
 | |
| import operator
 | |
| import unittest
 | |
| from itertools import permutations
 | |
| 
 | |
| import mlx.core as mx
 | |
| import mlx_tests
 | |
| import numpy as np
 | |
| 
 | |
| 
 | |
| class TestVersion(mlx_tests.MLXTestCase):
 | |
|     def test_version(self):
 | |
|         v = mx.__version__
 | |
|         vnums = v.split(".")
 | |
|         self.assertGreaterEqual(len(vnums), 3)
 | |
|         v = ".".join(str(int(vn)) for vn in vnums[:3])
 | |
|         self.assertEqual(v, mx.__version__[: len(v)])
 | |
| 
 | |
| 
 | |
| class TestDtypes(mlx_tests.MLXTestCase):
 | |
|     def test_dtypes(self):
 | |
|         self.assertEqual(mx.bool_.size, 1)
 | |
|         self.assertEqual(mx.uint8.size, 1)
 | |
|         self.assertEqual(mx.uint16.size, 2)
 | |
|         self.assertEqual(mx.uint32.size, 4)
 | |
|         self.assertEqual(mx.uint64.size, 8)
 | |
|         self.assertEqual(mx.int8.size, 1)
 | |
|         self.assertEqual(mx.int16.size, 2)
 | |
|         self.assertEqual(mx.int32.size, 4)
 | |
|         self.assertEqual(mx.int64.size, 8)
 | |
|         self.assertEqual(mx.float16.size, 2)
 | |
|         self.assertEqual(mx.float32.size, 4)
 | |
|         self.assertEqual(mx.bfloat16.size, 2)
 | |
|         self.assertEqual(mx.complex64.size, 8)
 | |
| 
 | |
|         self.assertEqual(str(mx.bool_), "mlx.core.bool")
 | |
|         self.assertEqual(str(mx.uint8), "mlx.core.uint8")
 | |
|         self.assertEqual(str(mx.uint16), "mlx.core.uint16")
 | |
|         self.assertEqual(str(mx.uint32), "mlx.core.uint32")
 | |
|         self.assertEqual(str(mx.uint64), "mlx.core.uint64")
 | |
|         self.assertEqual(str(mx.int8), "mlx.core.int8")
 | |
|         self.assertEqual(str(mx.int16), "mlx.core.int16")
 | |
|         self.assertEqual(str(mx.int32), "mlx.core.int32")
 | |
|         self.assertEqual(str(mx.int64), "mlx.core.int64")
 | |
|         self.assertEqual(str(mx.float16), "mlx.core.float16")
 | |
|         self.assertEqual(str(mx.float32), "mlx.core.float32")
 | |
|         self.assertEqual(str(mx.bfloat16), "mlx.core.bfloat16")
 | |
|         self.assertEqual(str(mx.complex64), "mlx.core.complex64")
 | |
| 
 | |
|     def test_scalar_conversion(self):
 | |
|         dtypes = [
 | |
|             "uint8",
 | |
|             "uint16",
 | |
|             "uint32",
 | |
|             "uint64",
 | |
|             "int8",
 | |
|             "int16",
 | |
|             "int32",
 | |
|             "int64",
 | |
|             "float16",
 | |
|             "float32",
 | |
|             "complex64",
 | |
|         ]
 | |
| 
 | |
|         for dtype in dtypes:
 | |
|             with self.subTest(dtype=dtype):
 | |
|                 x = np.array(2, dtype=getattr(np, dtype))
 | |
|                 y = np.min(x)
 | |
| 
 | |
|                 self.assertEqual(x.dtype, y.dtype)
 | |
|                 self.assertTupleEqual(x.shape, y.shape)
 | |
| 
 | |
|                 z = mx.array(y)
 | |
|                 self.assertEqual(np.array(z), x)
 | |
|                 self.assertEqual(np.array(z), y)
 | |
|                 self.assertEqual(z.dtype, getattr(mx, dtype))
 | |
|                 self.assertListEqual(list(z.shape), list(x.shape))
 | |
|                 self.assertListEqual(list(z.shape), list(y.shape))
 | |
| 
 | |
| 
 | |
| class TestArray(mlx_tests.MLXTestCase):
 | |
|     def test_array_basics(self):
 | |
|         x = mx.array(1)
 | |
|         self.assertEqual(x.size, 1)
 | |
|         self.assertEqual(x.ndim, 0)
 | |
|         self.assertEqual(x.shape, [])
 | |
|         self.assertEqual(x.dtype, mx.int32)
 | |
|         self.assertEqual(x.item(), 1)
 | |
|         self.assertTrue(isinstance(x.item(), int))
 | |
| 
 | |
|         with self.assertRaises(TypeError):
 | |
|             len(x)
 | |
| 
 | |
|         x = mx.array(1, mx.uint32)
 | |
|         self.assertEqual(x.item(), 1)
 | |
|         self.assertTrue(isinstance(x.item(), int))
 | |
| 
 | |
|         x = mx.array(1, mx.int64)
 | |
|         self.assertEqual(x.item(), 1)
 | |
|         self.assertTrue(isinstance(x.item(), int))
 | |
| 
 | |
|         x = mx.array(1.0)
 | |
|         self.assertEqual(x.size, 1)
 | |
|         self.assertEqual(x.ndim, 0)
 | |
|         self.assertEqual(x.shape, [])
 | |
|         self.assertEqual(x.dtype, mx.float32)
 | |
|         self.assertEqual(x.item(), 1.0)
 | |
|         self.assertTrue(isinstance(x.item(), float))
 | |
| 
 | |
|         x = mx.array(False)
 | |
|         self.assertEqual(x.size, 1)
 | |
|         self.assertEqual(x.ndim, 0)
 | |
|         self.assertEqual(x.shape, [])
 | |
|         self.assertEqual(x.dtype, mx.bool_)
 | |
|         self.assertEqual(x.item(), False)
 | |
|         self.assertTrue(isinstance(x.item(), bool))
 | |
| 
 | |
|         x = mx.array(complex(1, 1))
 | |
|         self.assertEqual(x.ndim, 0)
 | |
|         self.assertEqual(x.shape, [])
 | |
|         self.assertEqual(x.dtype, mx.complex64)
 | |
|         self.assertEqual(x.item(), complex(1, 1))
 | |
|         self.assertTrue(isinstance(x.item(), complex))
 | |
| 
 | |
|         x = mx.array([True, False, True])
 | |
|         self.assertEqual(x.dtype, mx.bool_)
 | |
|         self.assertEqual(x.ndim, 1)
 | |
|         self.assertEqual(x.shape, [3])
 | |
|         self.assertEqual(len(x), 3)
 | |
| 
 | |
|         x = mx.array([True, False, True], mx.float32)
 | |
|         self.assertEqual(x.dtype, mx.float32)
 | |
| 
 | |
|         x = mx.array([0, 1, 2])
 | |
|         self.assertEqual(x.dtype, mx.int32)
 | |
|         self.assertEqual(x.ndim, 1)
 | |
|         self.assertEqual(x.shape, [3])
 | |
| 
 | |
|         x = mx.array([0, 1, 2], mx.float32)
 | |
|         self.assertEqual(x.dtype, mx.float32)
 | |
| 
 | |
|         x = mx.array([0.0, 1.0, 2.0])
 | |
|         self.assertEqual(x.dtype, mx.float32)
 | |
|         self.assertEqual(x.ndim, 1)
 | |
|         self.assertEqual(x.shape, [3])
 | |
| 
 | |
|         x = mx.array([1j, 1 + 0j])
 | |
|         self.assertEqual(x.dtype, mx.complex64)
 | |
|         self.assertEqual(x.ndim, 1)
 | |
|         self.assertEqual(x.shape, [2])
 | |
| 
 | |
|         # From tuple
 | |
|         x = mx.array((1, 2, 3), mx.int32)
 | |
|         self.assertEqual(x.dtype, mx.int32)
 | |
|         self.assertEqual(x.tolist(), [1, 2, 3])
 | |
| 
 | |
|     def test_bool_conversion(self):
 | |
|         x = mx.array(True)
 | |
|         self.assertTrue(x)
 | |
|         x = mx.array(False)
 | |
|         self.assertFalse(x)
 | |
|         x = mx.array(1.0)
 | |
|         self.assertTrue(x)
 | |
|         x = mx.array(0.0)
 | |
|         self.assertFalse(x)
 | |
| 
 | |
|     def test_construction_from_lists(self):
 | |
|         x = mx.array([])
 | |
|         self.assertEqual(x.size, 0)
 | |
|         self.assertEqual(x.shape, [0])
 | |
|         self.assertEqual(x.dtype, mx.float32)
 | |
| 
 | |
|         x = mx.array([[], [], []])
 | |
|         self.assertEqual(x.size, 0)
 | |
|         self.assertEqual(x.shape, [3, 0])
 | |
|         self.assertEqual(x.dtype, mx.float32)
 | |
| 
 | |
|         x = mx.array([[[], []], [[], []], [[], []]])
 | |
|         self.assertEqual(x.size, 0)
 | |
|         self.assertEqual(x.shape, [3, 2, 0])
 | |
|         self.assertEqual(x.dtype, mx.float32)
 | |
| 
 | |
|         # Check failure cases
 | |
|         with self.assertRaises(ValueError):
 | |
|             x = mx.array([[[], []], [[]], [[], []]])
 | |
| 
 | |
|         with self.assertRaises(ValueError):
 | |
|             x = mx.array([[[], []], [[1.0, 2.0], []], [[], []]])
 | |
| 
 | |
|         with self.assertRaises(ValueError):
 | |
|             x = mx.array([[0, 1], [[0, 1], 1]])
 | |
| 
 | |
|         with self.assertRaises(ValueError):
 | |
|             x = mx.array([[0, 1], ["hello", 1]])
 | |
| 
 | |
|         x = mx.array([True, False, 3])
 | |
|         self.assertEqual(x.dtype, mx.int32)
 | |
| 
 | |
|         x = mx.array([True, False, 3, 4.0])
 | |
|         self.assertEqual(x.dtype, mx.float32)
 | |
| 
 | |
|         x = mx.array([[True, False], [1, 3], [2, 4.0]])
 | |
|         self.assertEqual(x.dtype, mx.float32)
 | |
| 
 | |
|         x = mx.array([[1.0, 2.0], [0.0, 3.9]], mx.bool_)
 | |
|         self.assertEqual(x.dtype, mx.bool_)
 | |
|         self.assertTrue(mx.array_equal(x, mx.array([[True, True], [False, True]])))
 | |
| 
 | |
|         x = mx.array([[1.0, 2.0], [0.0, 3.9]], mx.int32)
 | |
|         self.assertTrue(mx.array_equal(x, mx.array([[1, 2], [0, 3]])))
 | |
| 
 | |
|         x = mx.array([1 + 0j, 2j, True, 0], mx.complex64)
 | |
|         self.assertEqual(x.tolist(), [1 + 0j, 2j, 1 + 0j, 0j])
 | |
| 
 | |
|     def test_init_from_array(self):
 | |
|         x = mx.array(3.0)
 | |
|         y = mx.array(x)
 | |
| 
 | |
|         self.assertTrue(mx.array_equal(x, y))
 | |
| 
 | |
|         y = mx.array(x, mx.int32)
 | |
|         self.assertEqual(y.dtype, mx.int32)
 | |
|         self.assertEqual(y.item(), 3)
 | |
| 
 | |
|         y = mx.array(x, mx.bool_)
 | |
|         self.assertEqual(y.dtype, mx.bool_)
 | |
|         self.assertEqual(y.item(), True)
 | |
| 
 | |
|         # y = mx.array(x, mx.complex64)
 | |
|         # self.assertEqual(y.dtype, mx.complex64)
 | |
|         # self.assertEqual(y.item(), 3.0+0j)
 | |
| 
 | |
|     def test_array_repr(self):
 | |
|         x = mx.array(True)
 | |
|         self.assertEqual(str(x), "array(true, dtype=bool)")
 | |
|         x = mx.array(1)
 | |
|         self.assertEqual(str(x), "array(1, dtype=int32)")
 | |
|         x = mx.array(1.0)
 | |
|         self.assertEqual(str(x), "array(1, dtype=float32)")
 | |
| 
 | |
|         x = mx.array([1, 0, 1])
 | |
|         self.assertEqual(str(x), "array([1, 0, 1], dtype=int32)")
 | |
| 
 | |
|         x = mx.array([1] * 6)
 | |
|         expected = "array([1, 1, 1, 1, 1, 1], dtype=int32)"
 | |
|         self.assertEqual(str(x), expected)
 | |
| 
 | |
|         x = mx.array([1] * 7)
 | |
|         expected = "array([1, 1, 1, ..., 1, 1, 1], dtype=int32)"
 | |
|         self.assertEqual(str(x), expected)
 | |
| 
 | |
|         x = mx.array([[1, 2], [1, 2], [1, 2]])
 | |
|         expected = "array([[1, 2],\n" "       [1, 2],\n" "       [1, 2]], dtype=int32)"
 | |
|         self.assertEqual(str(x), expected)
 | |
| 
 | |
|         x = mx.array([[[1, 2], [1, 2]], [[1, 2], [1, 2]]])
 | |
|         expected = (
 | |
|             "array([[[1, 2],\n"
 | |
|             "        [1, 2]],\n"
 | |
|             "       [[1, 2],\n"
 | |
|             "        [1, 2]]], dtype=int32)"
 | |
|         )
 | |
|         self.assertEqual(str(x), expected)
 | |
| 
 | |
|         x = mx.array([[1, 2]] * 6)
 | |
|         expected = (
 | |
|             "array([[1, 2],\n"
 | |
|             "       [1, 2],\n"
 | |
|             "       [1, 2],\n"
 | |
|             "       [1, 2],\n"
 | |
|             "       [1, 2],\n"
 | |
|             "       [1, 2]], dtype=int32)"
 | |
|         )
 | |
|         self.assertEqual(str(x), expected)
 | |
|         x = mx.array([[1, 2]] * 7)
 | |
|         expected = (
 | |
|             "array([[1, 2],\n"
 | |
|             "       [1, 2],\n"
 | |
|             "       [1, 2],\n"
 | |
|             "       ...,\n"
 | |
|             "       [1, 2],\n"
 | |
|             "       [1, 2],\n"
 | |
|             "       [1, 2]], dtype=int32)"
 | |
|         )
 | |
|         self.assertEqual(str(x), expected)
 | |
| 
 | |
|         x = mx.array([1], dtype=mx.int8)
 | |
|         expected = "array([1], dtype=int8)"
 | |
|         self.assertEqual(str(x), expected)
 | |
|         x = mx.array([1], dtype=mx.int16)
 | |
|         expected = "array([1], dtype=int16)"
 | |
|         self.assertEqual(str(x), expected)
 | |
|         x = mx.array([1], dtype=mx.uint8)
 | |
|         expected = "array([1], dtype=uint8)"
 | |
|         self.assertEqual(str(x), expected)
 | |
| 
 | |
|         # Fp16 is not supported in all platforms
 | |
|         x = mx.array([1.2], dtype=mx.float16)
 | |
|         expected = "array([1.2002], dtype=float16)"
 | |
|         self.assertEqual(str(x), expected)
 | |
| 
 | |
|         x = mx.array([1 + 1j], dtype=mx.complex64)
 | |
|         expected = "array([1+1j], dtype=complex64)"
 | |
|         self.assertEqual(str(x), expected)
 | |
|         x = mx.array([1 - 1j], dtype=mx.complex64)
 | |
|         expected = "array([1-1j], dtype=complex64)"
 | |
| 
 | |
|         x = mx.array([1 + 1j], dtype=mx.complex64)
 | |
|         expected = "array([1+1j], dtype=complex64)"
 | |
|         self.assertEqual(str(x), expected)
 | |
|         x = mx.array([1 - 1j], dtype=mx.complex64)
 | |
|         expected = "array([1-1j], dtype=complex64)"
 | |
| 
 | |
|     def test_array_to_list(self):
 | |
|         types = [mx.bool_, mx.uint32, mx.int32, mx.int64, mx.float32]
 | |
|         for t in types:
 | |
|             x = mx.array(1, t)
 | |
|             self.assertEqual(x.tolist(), 1)
 | |
| 
 | |
|         vals = [1, 2, 3, 4]
 | |
|         x = mx.array(vals)
 | |
|         self.assertEqual(x.tolist(), vals)
 | |
| 
 | |
|         vals = [[1, 2], [3, 4]]
 | |
|         x = mx.array(vals)
 | |
|         self.assertEqual(x.tolist(), vals)
 | |
| 
 | |
|         vals = [[1, 0], [0, 1]]
 | |
|         x = mx.array(vals, mx.bool_)
 | |
|         self.assertEqual(x.tolist(), vals)
 | |
| 
 | |
|         vals = [[1.5, 2.5], [3.5, 4.5]]
 | |
|         x = mx.array(vals)
 | |
|         self.assertEqual(x.tolist(), vals)
 | |
| 
 | |
|         vals = [[[0.5, 1.5], [2.5, 3.5]], [[4.5, 5.5], [6.5, 7.5]]]
 | |
|         x = mx.array(vals)
 | |
|         self.assertEqual(x.tolist(), vals)
 | |
| 
 | |
|         # Empty arrays
 | |
|         vals = []
 | |
|         x = mx.array(vals)
 | |
|         self.assertEqual(x.tolist(), vals)
 | |
| 
 | |
|         vals = [[], []]
 | |
|         x = mx.array(vals)
 | |
|         self.assertEqual(x.tolist(), vals)
 | |
| 
 | |
|         # Complex arrays
 | |
|         vals = [0.5 + 0j, 1.5 + 1j, 2.5 + 0j, 3.5 + 1j]
 | |
|         x = mx.array(vals)
 | |
|         self.assertEqual(x.tolist(), vals)
 | |
| 
 | |
|     def test_array_np_conversion(self):
 | |
|         # Shape test
 | |
|         a = np.array([])
 | |
|         x = mx.array(a)
 | |
|         self.assertEqual(x.size, 0)
 | |
|         self.assertEqual(x.shape, [0])
 | |
|         self.assertEqual(x.dtype, mx.float32)
 | |
| 
 | |
|         a = np.array([[], [], []])
 | |
|         x = mx.array(a)
 | |
|         self.assertEqual(x.size, 0)
 | |
|         self.assertEqual(x.shape, [3, 0])
 | |
|         self.assertEqual(x.dtype, mx.float32)
 | |
| 
 | |
|         a = np.array([[[], []], [[], []], [[], []]])
 | |
|         x = mx.array(a)
 | |
|         self.assertEqual(x.size, 0)
 | |
|         self.assertEqual(x.shape, [3, 2, 0])
 | |
|         self.assertEqual(x.dtype, mx.float32)
 | |
| 
 | |
|         # Content test
 | |
|         a = 2.0 * np.ones((3, 5, 4))
 | |
|         x = mx.array(a)
 | |
|         self.assertEqual(x.dtype, mx.float32)
 | |
|         self.assertEqual(x.ndim, 3)
 | |
|         self.assertEqual(x.shape, [3, 5, 4])
 | |
| 
 | |
|         y = np.asarray(x)
 | |
|         self.assertTrue(np.allclose(a, y))
 | |
| 
 | |
|         a = np.array(3, dtype=np.int32)
 | |
|         x = mx.array(a)
 | |
|         self.assertEqual(x.dtype, mx.int32)
 | |
|         self.assertEqual(x.ndim, 0)
 | |
|         self.assertEqual(x.shape, [])
 | |
|         self.assertEqual(x.item(), 3)
 | |
| 
 | |
|         # mlx to numpy test
 | |
|         x = mx.array([True, False, True])
 | |
|         y = np.asarray(x)
 | |
|         self.assertEqual(y.dtype, np.bool_)
 | |
|         self.assertEqual(y.ndim, 1)
 | |
|         self.assertEqual(y.shape, (3,))
 | |
|         self.assertEqual(y[0], True)
 | |
|         self.assertEqual(y[1], False)
 | |
|         self.assertEqual(y[2], True)
 | |
| 
 | |
|         # complex64 mx <-> np
 | |
|         cvals = [0j, 1, 1 + 1j]
 | |
|         x = np.array(cvals)
 | |
|         y = mx.array(x)
 | |
|         self.assertEqual(y.dtype, mx.complex64)
 | |
|         self.assertEqual(y.shape, [3])
 | |
|         self.assertEqual(y.tolist(), cvals)
 | |
| 
 | |
|         y = mx.array([0j, 1, 1 + 1j])
 | |
|         x = np.asarray(y)
 | |
|         self.assertEqual(x.dtype, np.complex64)
 | |
|         self.assertEqual(x.shape, (3,))
 | |
|         self.assertEqual(x.tolist(), cvals)
 | |
| 
 | |
|     def test_array_np_dtype_conversion(self):
 | |
|         dtypes_list = [
 | |
|             (mx.bool_, np.bool_),
 | |
|             (mx.uint8, np.uint8),
 | |
|             (mx.uint16, np.uint16),
 | |
|             (mx.uint32, np.uint32),
 | |
|             (mx.uint64, np.uint64),
 | |
|             (mx.int8, np.int8),
 | |
|             (mx.int16, np.int16),
 | |
|             (mx.int32, np.int32),
 | |
|             (mx.int64, np.int64),
 | |
|             (mx.float16, np.float16),
 | |
|             (mx.float32, np.float32),
 | |
|             (mx.complex64, np.complex64),
 | |
|         ]
 | |
| 
 | |
|         for mlx_dtype, np_dtype in dtypes_list:
 | |
|             a_npy = np.random.uniform(low=0, high=100, size=(32,)).astype(np_dtype)
 | |
|             a_mlx = mx.array(a_npy)
 | |
| 
 | |
|             self.assertEqual(a_mlx.dtype, mlx_dtype)
 | |
|             self.assertTrue(np.allclose(a_mlx, a_npy))
 | |
| 
 | |
|             b_mlx = mx.random.uniform(
 | |
|                 low=0,
 | |
|                 high=10,
 | |
|                 shape=(32,),
 | |
|             ).astype(mlx_dtype)
 | |
|             b_npy = np.array(b_mlx)
 | |
| 
 | |
|             self.assertEqual(b_npy.dtype, np_dtype)
 | |
| 
 | |
|     def test_dtype_promotion(self):
 | |
|         dtypes_list = [
 | |
|             (mx.bool_, np.bool_),
 | |
|             (mx.uint8, np.uint8),
 | |
|             (mx.uint16, np.uint16),
 | |
|             (mx.uint32, np.uint32),
 | |
|             (mx.uint64, np.uint64),
 | |
|             (mx.int8, np.int8),
 | |
|             (mx.int16, np.int16),
 | |
|             (mx.int32, np.int32),
 | |
|             (mx.int64, np.int64),
 | |
|             (mx.float32, np.float32),
 | |
|         ]
 | |
| 
 | |
|         promotion_pairs = permutations(dtypes_list, 2)
 | |
| 
 | |
|         for (mlx_dt_1, np_dt_1), (mlx_dt_2, np_dt_2) in promotion_pairs:
 | |
|             with self.subTest(dtype1=np_dt_1, dtype2=np_dt_2):
 | |
|                 a_npy = np.ones((3,), dtype=np_dt_1)
 | |
|                 b_npy = np.ones((3,), dtype=np_dt_2)
 | |
| 
 | |
|                 c_npy = a_npy + b_npy
 | |
| 
 | |
|                 a_mlx = mx.ones((3,), dtype=mlx_dt_1)
 | |
|                 b_mlx = mx.ones((3,), dtype=mlx_dt_2)
 | |
| 
 | |
|                 c_mlx = a_mlx + b_mlx
 | |
| 
 | |
|                 self.assertEqual(c_mlx.dtype, mx.array(c_npy).dtype)
 | |
| 
 | |
|         a_mlx = mx.ones((3,), dtype=mx.float16)
 | |
|         b_mlx = mx.ones((3,), dtype=mx.float32)
 | |
|         c_mlx = a_mlx + b_mlx
 | |
| 
 | |
|         self.assertEqual(c_mlx.dtype, mx.float32)
 | |
| 
 | |
|         b_mlx = mx.ones((3,), dtype=mx.int32)
 | |
|         c_mlx = a_mlx + b_mlx
 | |
| 
 | |
|         self.assertEqual(c_mlx.dtype, mx.float16)
 | |
| 
 | |
|     def test_dtype_python_scalar_promotion(self):
 | |
|         tests = [
 | |
|             (mx.bool_, operator.mul, False, mx.bool_),
 | |
|             (mx.bool_, operator.mul, 0, mx.int32),
 | |
|             (mx.bool_, operator.mul, 1.0, mx.float32),
 | |
|             (mx.int8, operator.mul, False, mx.int8),
 | |
|             (mx.int8, operator.mul, 0, mx.int8),
 | |
|             (mx.int8, operator.mul, 1.0, mx.float32),
 | |
|             (mx.int16, operator.mul, False, mx.int16),
 | |
|             (mx.int16, operator.mul, 0, mx.int16),
 | |
|             (mx.int16, operator.mul, 1.0, mx.float32),
 | |
|             (mx.int32, operator.mul, False, mx.int32),
 | |
|             (mx.int32, operator.mul, 0, mx.int32),
 | |
|             (mx.int32, operator.mul, 1.0, mx.float32),
 | |
|             (mx.int64, operator.mul, False, mx.int64),
 | |
|             (mx.int64, operator.mul, 0, mx.int64),
 | |
|             (mx.int64, operator.mul, 1.0, mx.float32),
 | |
|             (mx.uint8, operator.mul, False, mx.uint8),
 | |
|             (mx.uint8, operator.mul, 0, mx.uint8),
 | |
|             (mx.uint8, operator.mul, 1.0, mx.float32),
 | |
|             (mx.uint16, operator.mul, False, mx.uint16),
 | |
|             (mx.uint16, operator.mul, 0, mx.uint16),
 | |
|             (mx.uint16, operator.mul, 1.0, mx.float32),
 | |
|             (mx.uint32, operator.mul, False, mx.uint32),
 | |
|             (mx.uint32, operator.mul, 0, mx.uint32),
 | |
|             (mx.uint32, operator.mul, 1.0, mx.float32),
 | |
|             (mx.uint64, operator.mul, False, mx.uint64),
 | |
|             (mx.uint64, operator.mul, 0, mx.uint64),
 | |
|             (mx.uint64, operator.mul, 1.0, mx.float32),
 | |
|             (mx.float32, operator.mul, False, mx.float32),
 | |
|             (mx.float32, operator.mul, 0, mx.float32),
 | |
|             (mx.float32, operator.mul, 1.0, mx.float32),
 | |
|             (mx.float16, operator.mul, False, mx.float16),
 | |
|             (mx.float16, operator.mul, 0, mx.float16),
 | |
|             (mx.float16, operator.mul, 1.0, mx.float16),
 | |
|         ]
 | |
| 
 | |
|         for dtype_in, f, v, dtype_out in tests:
 | |
|             x = mx.array(0, dtype_in)
 | |
|             y = f(x, v)
 | |
|             self.assertEqual(y.dtype, dtype_out)
 | |
| 
 | |
|     def test_array_comparison(self):
 | |
|         a = mx.array([0.0, 1.0, 5.0])
 | |
|         b = mx.array([-1.0, 2.0, 5.0])
 | |
| 
 | |
|         self.assertEqual((a < b).tolist(), [False, True, False])
 | |
|         self.assertEqual((a <= b).tolist(), [False, True, True])
 | |
|         self.assertEqual((a > b).tolist(), [True, False, False])
 | |
|         self.assertEqual((a >= b).tolist(), [True, False, True])
 | |
| 
 | |
|         self.assertEqual((a < 5).tolist(), [True, True, False])
 | |
|         self.assertEqual((5 < a).tolist(), [False, False, False])
 | |
|         self.assertEqual((5 <= a).tolist(), [False, False, True])
 | |
|         self.assertEqual((a > 1).tolist(), [False, False, True])
 | |
|         self.assertEqual((a >= 1).tolist(), [False, True, True])
 | |
| 
 | |
|     def test_array_neg(self):
 | |
|         a = mx.array([-1.0, 4.0, 0.0])
 | |
| 
 | |
|         self.assertEqual((-a).tolist(), [1.0, -4.0, 0.0])
 | |
| 
 | |
|     def test_array_type_cast(self):
 | |
|         a = mx.array([0.1, 2.3, -1.3])
 | |
|         b = [0, 2, -1]
 | |
| 
 | |
|         self.assertEqual(a.astype(mx.int32).tolist(), b)
 | |
|         self.assertEqual(a.astype(mx.int32).dtype, mx.int32)
 | |
| 
 | |
|         b = mx.array(b).astype(mx.float32)
 | |
|         self.assertEqual(b.dtype, mx.float32)
 | |
| 
 | |
|     def test_array_iteration(self):
 | |
|         a = mx.array([0, 1, 2])
 | |
| 
 | |
|         for i, x in enumerate(a):
 | |
|             self.assertEqual(x.item(), i)
 | |
| 
 | |
|         a = mx.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
 | |
|         x, y, z = a
 | |
|         self.assertEqual(x.tolist(), [1.0, 2.0])
 | |
|         self.assertEqual(y.tolist(), [3.0, 4.0])
 | |
|         self.assertEqual(z.tolist(), [5.0, 6.0])
 | |
| 
 | |
|     def test_indexing(self):
 | |
|         # Basic content check, slice indexing
 | |
|         a_npy = np.arange(64, dtype=np.float32)
 | |
|         a_mlx = mx.array(a_npy)
 | |
|         a_sliced_mlx = a_mlx[2:50:4]
 | |
|         a_sliced_npy = np.asarray(a_sliced_mlx)
 | |
|         self.assertTrue(np.array_equal(a_sliced_npy, a_npy[2:50:4]))
 | |
| 
 | |
|         # Basic content check, mlx array indexing
 | |
|         a_npy = np.arange(64, dtype=np.int32)
 | |
|         a_npy = a_npy.reshape((8, 8))
 | |
|         a_mlx = mx.array(a_npy)
 | |
|         idx_npy = np.array([0, 1, 2, 7, 5], dtype=np.uint32)
 | |
|         idx_mlx = mx.array(idx_npy)
 | |
|         a_sliced_mlx = a_mlx[idx_mlx]
 | |
|         a_sliced_npy = np.asarray(a_sliced_mlx)
 | |
|         self.assertTrue(np.array_equal(a_sliced_npy, a_npy[idx_npy]))
 | |
| 
 | |
|         # Basic content check, int indexing
 | |
|         a_sliced_mlx = a_mlx[5]
 | |
|         a_sliced_npy = np.asarray(a_sliced_mlx)
 | |
|         self.assertTrue(np.array_equal(a_sliced_npy, a_npy[5]))
 | |
|         self.assertEqual(len(a_sliced_npy.shape), len(a_npy[5].shape))
 | |
|         self.assertEqual(len(a_sliced_npy.shape), 1)
 | |
|         self.assertEqual(a_sliced_npy.shape[0], a_npy[5].shape[0])
 | |
| 
 | |
|         # Basic content check, negative indexing
 | |
|         a_sliced_mlx = a_mlx[-1]
 | |
|         self.assertTrue(np.array_equal(a_sliced_mlx, a_npy[-1]))
 | |
| 
 | |
|         # Basic content check, empty index
 | |
|         a_sliced_mlx = a_mlx[()]
 | |
|         a_sliced_npy = np.asarray(a_sliced_mlx)
 | |
|         self.assertTrue(np.array_equal(a_sliced_npy, a_npy[()]))
 | |
| 
 | |
|         # Basic content check, new axis
 | |
|         a_sliced_mlx = a_mlx[None]
 | |
|         a_sliced_npy = np.asarray(a_sliced_mlx)
 | |
|         self.assertTrue(np.array_equal(a_sliced_npy, a_npy[None]))
 | |
| 
 | |
|         # Multi dim indexing, all ints
 | |
|         self.assertEqual(a_mlx[0, 0].item(), 0)
 | |
|         self.assertEqual(a_mlx[0, 0].ndim, 0)
 | |
| 
 | |
|         # Multi dim indexing, all slices
 | |
|         a_sliced_mlx = a_mlx[2:4, 5:]
 | |
|         a_sliced_npy = np.asarray(a_sliced_mlx)
 | |
|         self.assertTrue(np.array_equal(a_sliced_npy, a_npy[2:4, 5:]))
 | |
| 
 | |
|         a_sliced_mlx = a_mlx[:, 0:5]
 | |
|         a_sliced_npy = np.asarray(a_sliced_mlx)
 | |
|         self.assertTrue(np.array_equal(a_sliced_npy, a_npy[:, 0:5]))
 | |
| 
 | |
|         # Slicing, strides
 | |
|         a_sliced_mlx = a_mlx[:, ::2]
 | |
|         a_sliced_npy = np.asarray(a_sliced_mlx)
 | |
|         self.assertTrue(np.array_equal(a_sliced_npy, a_npy[:, ::2]))
 | |
| 
 | |
|         # Slicing, -ve index
 | |
|         a_sliced_mlx = a_mlx[-2:, :-1]
 | |
|         a_sliced_npy = np.asarray(a_sliced_mlx)
 | |
|         self.assertTrue(np.array_equal(a_sliced_npy, a_npy[-2:, :-1]))
 | |
| 
 | |
|         # Slicing, start > end
 | |
|         a_sliced_mlx = a_mlx[8:3]
 | |
|         self.assertEqual(a_sliced_mlx.size, 0)
 | |
| 
 | |
|         # Slicing, Clipping past the end
 | |
|         a_sliced_mlx = a_mlx[7:10]
 | |
|         a_sliced_npy = np.asarray(a_sliced_mlx)
 | |
|         self.assertTrue(np.array_equal(a_sliced_npy, a_npy[7:10]))
 | |
| 
 | |
|         # Multi dim indexing, int and slices
 | |
|         a_sliced_mlx = a_mlx[0, :5]
 | |
|         a_sliced_npy = np.asarray(a_sliced_mlx)
 | |
|         self.assertTrue(np.array_equal(a_sliced_npy, a_npy[0, :5]))
 | |
| 
 | |
|         a_sliced_mlx = a_mlx[:, -1]
 | |
|         a_sliced_npy = np.asarray(a_sliced_mlx)
 | |
|         self.assertTrue(np.array_equal(a_sliced_npy, a_npy[:, -1]))
 | |
| 
 | |
|         # Multi dim indexing, int and array
 | |
|         a_sliced_mlx = a_mlx[idx_mlx, 0]
 | |
|         a_sliced_npy = np.asarray(a_sliced_mlx)
 | |
|         self.assertTrue(np.array_equal(a_sliced_npy, a_npy[idx_npy, 0]))
 | |
| 
 | |
|         # Multi dim indexing, array and slices
 | |
|         a_sliced_mlx = a_mlx[idx_mlx, :5]
 | |
|         a_sliced_npy = np.asarray(a_sliced_mlx)
 | |
|         self.assertTrue(np.array_equal(a_sliced_npy, a_npy[idx_npy, :5]))
 | |
| 
 | |
|         a_sliced_mlx = a_mlx[:, idx_mlx]
 | |
|         a_sliced_npy = np.asarray(a_sliced_mlx)
 | |
|         self.assertTrue(np.array_equal(a_sliced_npy, a_npy[:, idx_npy]))
 | |
| 
 | |
|         # Multi dim indexing with multiple arrays
 | |
|         def check_slices(arr_np, *idx_np):
 | |
|             arr_mlx = mx.array(arr_np)
 | |
|             idx_mlx = [
 | |
|                 mx.array(idx) if isinstance(idx, np.ndarray) else idx for idx in idx_np
 | |
|             ]
 | |
|             slice_mlx = arr_mlx[tuple(idx_mlx)]
 | |
|             self.assertTrue(
 | |
|                 np.array_equal(arr_np[tuple(idx_np)], arr_mlx[tuple(idx_mlx)])
 | |
|             )
 | |
| 
 | |
|         a_np = np.arange(16).reshape(4, 4)
 | |
|         check_slices(a_np, np.array([0, 1, 2, 3]), np.array([0, 1, 2, 3]))
 | |
|         check_slices(a_np, np.array([0, 1, 2, 3]), np.array([1, 0, 3, 3]))
 | |
|         check_slices(a_np, np.array([[0, 1]]), np.array([[0], [1], [3]]))
 | |
| 
 | |
|         a_np = np.arange(64).reshape(2, 4, 2, 4)
 | |
|         check_slices(a_np, 0, np.array([0, 1, 2]))
 | |
|         check_slices(a_np, slice(0, 1), np.array([0, 1, 2]))
 | |
|         check_slices(
 | |
|             a_np, slice(0, 1), np.array([0, 1, 2]), slice(None), slice(0, 4, 2)
 | |
|         )
 | |
|         check_slices(
 | |
|             a_np, slice(0, 1), np.array([0, 1, 2]), slice(None), np.array([1, 2, 0])
 | |
|         )
 | |
|         check_slices(a_np, slice(0, 1), np.array([0, 1, 2]), 1, np.array([1, 2, 0]))
 | |
|         check_slices(
 | |
|             a_np, slice(0, 1), np.array([0, 1, 2]), np.array([1, 0, 0]), slice(0, 1)
 | |
|         )
 | |
|         check_slices(
 | |
|             a_np,
 | |
|             slice(0, 1),
 | |
|             np.array([[0], [1], [2]]),
 | |
|             np.array([[1, 0, 0]]),
 | |
|             slice(0, 1),
 | |
|         )
 | |
|         check_slices(
 | |
|             a_np,
 | |
|             slice(0, 2),
 | |
|             np.array([[0], [1], [2]]),
 | |
|             slice(0, 2),
 | |
|             np.array([[1, 0, 0]]),
 | |
|         )
 | |
|         for p in permutations([slice(None), slice(None), 0, np.array([1, 0])]):
 | |
|             check_slices(a_np, *p)
 | |
|         for p in permutations(
 | |
|             [slice(None), slice(None), 0, np.array([1, 0]), None, None]
 | |
|         ):
 | |
|             check_slices(a_np, *p)
 | |
|         for p in permutations([0, np.array([1, 0]), None, Ellipsis, slice(None)]):
 | |
|             check_slices(a_np, *p)
 | |
| 
 | |
|         # Non-contiguous arrays in slicing
 | |
|         a_mlx = mx.reshape(mx.arange(128), (16, 8))
 | |
|         a_mlx = a_mlx[::2, :]
 | |
|         a_np = np.array(a_mlx)
 | |
|         idx_np = np.arange(8)[::2]
 | |
|         idx_mlx = mx.arange(8)[::2]
 | |
|         self.assertTrue(
 | |
|             np.array_equal(a_np[idx_np, idx_np], np.array(a_mlx[idx_mlx, idx_mlx]))
 | |
|         )
 | |
| 
 | |
|     def test_setitem(self):
 | |
|         a = mx.array(0)
 | |
|         a[None] = 1
 | |
|         self.assertEqual(a.item(), 1)
 | |
| 
 | |
|         a = mx.array([1, 2, 3])
 | |
|         a[0] = 2
 | |
|         self.assertEqual(a.tolist(), [2, 2, 3])
 | |
| 
 | |
|         a[-1] = 2
 | |
|         self.assertEqual(a.tolist(), [2, 2, 2])
 | |
| 
 | |
|         a[0] = mx.array([[[1]]])
 | |
|         self.assertEqual(a.tolist(), [1, 2, 2])
 | |
| 
 | |
|         a[:] = 0
 | |
|         self.assertEqual(a.tolist(), [0, 0, 0])
 | |
| 
 | |
|         a[None] = 1
 | |
|         self.assertEqual(a.tolist(), [1, 1, 1])
 | |
| 
 | |
|         a[0:1] = 2
 | |
|         self.assertEqual(a.tolist(), [2, 1, 1])
 | |
| 
 | |
|         a[0:2] = 3
 | |
|         self.assertEqual(a.tolist(), [3, 3, 1])
 | |
| 
 | |
|         a[0:3] = 4
 | |
|         self.assertEqual(a.tolist(), [4, 4, 4])
 | |
| 
 | |
|         a[0:1] = mx.array(0)
 | |
|         self.assertEqual(a.tolist(), [0, 4, 4])
 | |
| 
 | |
|         a[0:1] = mx.array([1])
 | |
|         self.assertEqual(a.tolist(), [1, 4, 4])
 | |
| 
 | |
|         with self.assertRaises(ValueError):
 | |
|             a[0:1] = mx.array([2, 3])
 | |
| 
 | |
|         a[0:2] = mx.array([2, 2])
 | |
|         self.assertEqual(a.tolist(), [2, 2, 4])
 | |
| 
 | |
|         a[:] = mx.array([[[[1, 1, 1]]]])
 | |
|         self.assertEqual(a.tolist(), [1, 1, 1])
 | |
| 
 | |
|         # Array slices
 | |
|         def check_slices(arr_np, update_np, *idx_np):
 | |
|             arr_mlx = mx.array(arr_np)
 | |
|             update_mlx = mx.array(update_np)
 | |
|             idx_mlx = [
 | |
|                 mx.array(idx) if isinstance(idx, np.ndarray) else idx for idx in idx_np
 | |
|             ]
 | |
|             if len(idx_np) > 1:
 | |
|                 idx_np = tuple(idx_np)
 | |
|                 idx_mlx = tuple(idx_mlx)
 | |
|             else:
 | |
|                 idx_np = idx_np[0]
 | |
|                 idx_mlx = idx_mlx[0]
 | |
|             arr_np[idx_np] = update_np
 | |
|             arr_mlx[idx_mlx] = update_mlx
 | |
|             self.assertTrue(np.array_equal(arr_np, arr_mlx))
 | |
| 
 | |
|         check_slices(np.zeros((3, 3)), 1, 0)
 | |
|         check_slices(np.zeros((3, 3)), 1, -1)
 | |
|         check_slices(np.zeros((3, 3)), 1, slice(0, 2))
 | |
|         check_slices(np.zeros((3, 3)), np.array([[0, 1, 2], [3, 4, 5]]), slice(0, 2))
 | |
| 
 | |
|         with self.assertRaises(ValueError):
 | |
|             a = mx.array(0)
 | |
|             a[0] = mx.array(1)
 | |
| 
 | |
|         check_slices(np.zeros((3, 3)), 1, np.array([0, 1, 2]))
 | |
|         check_slices(np.zeros((3, 3)), np.array(3), np.array([0, 1, 2]))
 | |
|         check_slices(np.zeros((3, 3)), np.array([3]), np.array([0, 1, 2]))
 | |
|         check_slices(np.zeros((3, 3)), np.array([3]), np.array([0, 1]))
 | |
|         check_slices(np.zeros((3, 2)), np.array([[3, 3], [4, 4]]), np.array([0, 1]))
 | |
|         check_slices(np.zeros((3, 2)), np.array([[3, 3], [4, 4]]), np.array([0, 1]))
 | |
|         check_slices(
 | |
|             np.zeros((3, 2)), np.array([[3, 3], [4, 4], [5, 5]]), np.array([0, 0, 1])
 | |
|         )
 | |
| 
 | |
|         # Multiple slices
 | |
|         a = mx.array(0)
 | |
|         a[None, None] = 1
 | |
|         self.assertEqual(a.item(), 1)
 | |
| 
 | |
|         a[None, None] = mx.array(2)
 | |
|         self.assertEqual(a.item(), 2)
 | |
| 
 | |
|         a[None, None] = mx.array([[[3]]])
 | |
|         self.assertEqual(a.item(), 3)
 | |
| 
 | |
|         a[()] = 4
 | |
|         self.assertEqual(a.item(), 4)
 | |
| 
 | |
|         a_np = np.zeros((2, 3, 4, 5))
 | |
|         check_slices(a_np, 1, np.array([0, 0]), slice(0, 2), slice(0, 3), 4)
 | |
|         check_slices(
 | |
|             a_np,
 | |
|             np.arange(10).reshape(2, 5),
 | |
|             np.array([0, 0]),
 | |
|             np.array([0, 1]),
 | |
|             np.array([2, 3]),
 | |
|         )
 | |
|         check_slices(
 | |
|             a_np,
 | |
|             np.array([[3], [4]]),
 | |
|             np.array([0, 0]),
 | |
|             np.array([0, 1]),
 | |
|             np.array([2, 3]),
 | |
|         )
 | |
|         check_slices(
 | |
|             a_np, np.arange(5), np.array([0, 0]), np.array([0, 1]), np.array([2, 3])
 | |
|         )
 | |
|         check_slices(np.zeros(5), np.arange(2), None, None, np.array([2, 3]))
 | |
|         check_slices(
 | |
|             np.zeros((4, 3, 4)),
 | |
|             np.arange(3),
 | |
|             np.array([2, 3]),
 | |
|             slice(0, 3),
 | |
|             np.array([2, 3]),
 | |
|         )
 | |
| 
 | |
|         with self.assertRaises(ValueError):
 | |
|             a = mx.zeros((4, 3, 4))
 | |
|             a[mx.array([2, 3]), None, mx.array([2, 3])] = mx.arange(2)
 | |
| 
 | |
|         with self.assertRaises(ValueError):
 | |
|             a = mx.zeros((4, 3, 4))
 | |
|             a[mx.array([2, 3]), None, mx.array([2, 3])] = mx.arange(3)
 | |
| 
 | |
|         check_slices(np.zeros((4, 3, 4)), 1, np.array([2, 3]), None, np.array([2, 1]))
 | |
|         check_slices(
 | |
|             np.zeros((4, 3, 4)), np.arange(4), np.array([2, 3]), None, np.array([2, 1])
 | |
|         )
 | |
|         check_slices(
 | |
|             np.zeros((4, 3, 4)),
 | |
|             np.arange(2 * 4).reshape(2, 1, 4),
 | |
|             np.array([2, 3]),
 | |
|             None,
 | |
|             np.array([2, 1]),
 | |
|         )
 | |
| 
 | |
|         check_slices(np.zeros((4, 4)), 1, slice(0, 2), slice(0, 2))
 | |
|         check_slices(np.zeros((4, 4)), np.arange(2), slice(0, 2), slice(0, 2))
 | |
|         check_slices(
 | |
|             np.zeros((4, 4)), np.arange(2).reshape(2, 1), slice(0, 2), slice(0, 2)
 | |
|         )
 | |
|         check_slices(
 | |
|             np.zeros((4, 4)), np.arange(4).reshape(2, 2), slice(0, 2), slice(0, 2)
 | |
|         )
 | |
| 
 | |
|         with self.assertRaises(ValueError):
 | |
|             a = mx.zeros((2, 2, 2))
 | |
|             a[..., ...] = 1
 | |
| 
 | |
|         with self.assertRaises(ValueError):
 | |
|             a = mx.zeros((2, 2, 2, 2, 2))
 | |
|             a[0, ..., 0, ..., 0] = 1
 | |
| 
 | |
|         with self.assertRaises(ValueError):
 | |
|             a = mx.zeros((2, 2))
 | |
|             a[0, 0, 0] = 1
 | |
| 
 | |
|         check_slices(np.zeros((2, 2, 2, 2)), 1, None, Ellipsis, None)
 | |
|         check_slices(
 | |
|             np.zeros((2, 2, 2, 2)), 1, np.array([0, 1]), Ellipsis, np.array([0, 1])
 | |
|         )
 | |
|         check_slices(
 | |
|             np.zeros((2, 2, 2, 2)),
 | |
|             np.arange(2 * 2 * 2).reshape(2, 2, 2),
 | |
|             np.array([0, 1]),
 | |
|             Ellipsis,
 | |
|             np.array([0, 1]),
 | |
|         )
 | |
| 
 | |
|     def test_slice_negative_step(self):
 | |
|         a_np = np.arange(20)
 | |
|         a_mx = mx.array(a_np)
 | |
| 
 | |
|         # Basic negative slice
 | |
|         b_np = a_np[::-1]
 | |
|         b_mx = a_mx[::-1]
 | |
|         self.assertTrue(np.array_equal(b_np, b_mx))
 | |
| 
 | |
|         # Bounds negative slice
 | |
|         b_np = a_np[-3:3:-1]
 | |
|         b_mx = a_mx[-3:3:-1]
 | |
|         self.assertTrue(np.array_equal(b_np, b_mx))
 | |
| 
 | |
|         # Bounds negative slice
 | |
|         b_np = a_np[25:-50:-1]
 | |
|         b_mx = a_mx[25:-50:-1]
 | |
|         self.assertTrue(np.array_equal(b_np, b_mx))
 | |
| 
 | |
|         # Jumping negative slice
 | |
|         b_np = a_np[::-3]
 | |
|         b_mx = a_mx[::-3]
 | |
|         self.assertTrue(np.array_equal(b_np, b_mx))
 | |
| 
 | |
|         # Bounds and negative slice
 | |
|         b_np = a_np[-3:3:-3]
 | |
|         b_mx = a_mx[-3:3:-3]
 | |
|         self.assertTrue(np.array_equal(b_np, b_mx))
 | |
| 
 | |
|         # Bounds and negative slice
 | |
|         b_np = a_np[25:-50:-3]
 | |
|         b_mx = a_mx[25:-50:-3]
 | |
|         self.assertTrue(np.array_equal(b_np, b_mx))
 | |
| 
 | |
|         # Negatie slice and ascending bounds
 | |
|         b_np = a_np[0:20:-3]
 | |
|         b_mx = a_mx[0:20:-3]
 | |
|         self.assertTrue(np.array_equal(b_np, b_mx))
 | |
| 
 | |
|         # Multi-dim negative slices
 | |
|         a_np = np.arange(3 * 6 * 4).reshape(3, 6, 4)
 | |
|         a_mx = mx.array(a_np)
 | |
| 
 | |
|         # Flip each dim
 | |
|         b_np = a_np[..., ::-1]
 | |
|         b_mx = a_mx[..., ::-1]
 | |
|         self.assertTrue(np.array_equal(b_np, b_mx))
 | |
| 
 | |
|         b_np = a_np[:, ::-1, :]
 | |
|         b_mx = a_mx[:, ::-1, :]
 | |
|         self.assertTrue(np.array_equal(b_np, b_mx))
 | |
| 
 | |
|         b_np = a_np[::-1, ...]
 | |
|         b_mx = a_mx[::-1, ...]
 | |
|         self.assertTrue(np.array_equal(b_np, b_mx))
 | |
| 
 | |
|         # Flip pairs of dims
 | |
|         b_np = a_np[::-1, 1:5:2, ::-2]
 | |
|         b_mx = a_mx[::-1, 1:5:2, ::-2]
 | |
|         self.assertTrue(np.array_equal(b_np, b_mx))
 | |
| 
 | |
|         b_np = a_np[::-1, ::-2, 1:5:2]
 | |
|         b_mx = a_mx[::-1, ::-2, 1:5:2]
 | |
|         self.assertTrue(np.array_equal(b_np, b_mx))
 | |
| 
 | |
|         # Flip all dims
 | |
|         b_np = a_np[::-1, ::-3, ::-2]
 | |
|         b_mx = a_mx[::-1, ::-3, ::-2]
 | |
|         self.assertTrue(np.array_equal(b_np, b_mx))
 | |
| 
 | |
|     def test_api(self):
 | |
|         x = mx.array(np.random.rand(10, 10, 10))
 | |
|         ops = [
 | |
|             ("reshape", (100, -1)),
 | |
|             "square",
 | |
|             "sqrt",
 | |
|             "rsqrt",
 | |
|             "reciprocal",
 | |
|             "exp",
 | |
|             "log",
 | |
|             "sin",
 | |
|             "cos",
 | |
|             "log1p",
 | |
|             ("all", 1),
 | |
|             ("any", 1),
 | |
|             ("transpose", (0, 2, 1)),
 | |
|             ("sum", 1),
 | |
|             ("prod", 1),
 | |
|             ("min", 1),
 | |
|             ("max", 1),
 | |
|             ("logsumexp", 1),
 | |
|             ("mean", 1),
 | |
|             ("var", 1),
 | |
|             ("argmin", 1),
 | |
|             ("argmax", 1),
 | |
|         ]
 | |
|         for op in ops:
 | |
|             if isinstance(op, tuple):
 | |
|                 op, *args = op
 | |
|             else:
 | |
|                 args = tuple()
 | |
|             y1 = getattr(mx, op)(x, *args)
 | |
|             y2 = getattr(x, op)(*args)
 | |
|             self.assertEqual(y1.dtype, y2.dtype)
 | |
|             self.assertEqual(y1.shape, y2.shape)
 | |
|             self.assertTrue(mx.array_equal(y1, y2))
 | |
| 
 | |
|         y1 = mx.split(x, 2)
 | |
|         y2 = x.split(2)
 | |
|         self.assertEqual(len(y1), 2)
 | |
|         self.assertEqual(len(y1), len(y2))
 | |
|         self.assertTrue(mx.array_equal(y1[0], y2[0]))
 | |
|         self.assertTrue(mx.array_equal(y1[1], y2[1]))
 | |
| 
 | |
|     def test_memoryless_copy(self):
 | |
|         a_mx = mx.ones((2, 2))
 | |
|         b_mx = mx.broadcast_to(a_mx, (5, 2, 2))
 | |
| 
 | |
|         # Make np arrays without copy
 | |
|         a_np = np.array(a_mx, copy=False)
 | |
|         b_np = np.array(b_mx, copy=False)
 | |
| 
 | |
|         # Check that we get read-only array that does not own the underlying data
 | |
|         self.assertFalse(a_np.flags.owndata)
 | |
|         self.assertFalse(a_np.flags.writeable)
 | |
| 
 | |
|         # Check contents
 | |
|         self.assertTrue(np.array_equal(np.ones((2, 2), dtype=np.float32), a_np))
 | |
|         self.assertTrue(np.array_equal(np.ones((5, 2, 2), dtype=np.float32), b_np))
 | |
| 
 | |
|         # Check strides
 | |
|         self.assertSequenceEqual(b_np.strides, (0, 8, 4))
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     unittest.main()
 | 
