mirror of
				https://github.com/ml-explore/mlx.git
				synced 2025-10-31 16:21:27 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			194 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			194 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright © 2023 Apple Inc.
 | |
| 
 | |
| import unittest
 | |
| 
 | |
| import mlx.core as mx
 | |
| import mlx_tests
 | |
| 
 | |
| 
 | |
| class TestRandom(mlx_tests.MLXTestCase):
 | |
|     def test_global_rng(self):
 | |
|         mx.random.seed(3)
 | |
|         a = mx.random.uniform()
 | |
|         b = mx.random.uniform()
 | |
| 
 | |
|         mx.random.seed(3)
 | |
|         x = mx.random.uniform()
 | |
|         y = mx.random.uniform()
 | |
| 
 | |
|         self.assertEqual(a.item(), x.item())
 | |
|         self.assertEqual(y.item(), b.item())
 | |
| 
 | |
|     def test_key(self):
 | |
|         k1 = mx.random.key(0)
 | |
|         k2 = mx.random.key(0)
 | |
|         self.assertTrue(mx.array_equal(k1, k2))
 | |
| 
 | |
|         k2 = mx.random.key(1)
 | |
|         self.assertFalse(mx.array_equal(k1, k2))
 | |
| 
 | |
|     def test_key_split(self):
 | |
|         key = mx.random.key(0)
 | |
| 
 | |
|         k1, k2 = mx.random.split(key)
 | |
|         self.assertFalse(mx.array_equal(k1, k2))
 | |
| 
 | |
|         r1, r2 = mx.random.split(key)
 | |
|         self.assertTrue(mx.array_equal(k1, r1))
 | |
|         self.assertTrue(mx.array_equal(k2, r2))
 | |
| 
 | |
|         keys = mx.random.split(key, 10)
 | |
|         self.assertEqual(keys.shape, [10, 2])
 | |
| 
 | |
|     def test_uniform(self):
 | |
|         key = mx.random.key(0)
 | |
|         a = mx.random.uniform(key=key)
 | |
|         self.assertEqual(a.shape, [])
 | |
|         self.assertEqual(a.dtype, mx.float32)
 | |
| 
 | |
|         b = mx.random.uniform(key=key)
 | |
|         self.assertEqual(a.item(), b.item())
 | |
| 
 | |
|         a = mx.random.uniform(shape=(2, 3))
 | |
|         self.assertEqual(a.shape, [2, 3])
 | |
| 
 | |
|         a = mx.random.uniform(shape=(1000,), low=-1, high=5)
 | |
|         self.assertTrue(mx.all((a > -1) < 5).item())
 | |
| 
 | |
|         a = mx.random.uniform(shape=(1000,), low=mx.array(-1), high=5)
 | |
|         self.assertTrue(mx.all((a > -1) < 5).item())
 | |
| 
 | |
|     def test_normal(self):
 | |
|         key = mx.random.key(0)
 | |
|         a = mx.random.normal(key=key)
 | |
|         self.assertEqual(a.shape, [])
 | |
|         self.assertEqual(a.dtype, mx.float32)
 | |
| 
 | |
|         b = mx.random.normal(key=key)
 | |
|         self.assertEqual(a.item(), b.item())
 | |
| 
 | |
|         a = mx.random.normal(shape=(2, 3))
 | |
|         self.assertEqual(a.shape, [2, 3])
 | |
| 
 | |
|         ## Generate in float16 or bfloat16
 | |
|         for t in [mx.float16, mx.bfloat16]:
 | |
|             a = mx.random.normal(dtype=t)
 | |
|             self.assertEqual(a.dtype, t)
 | |
| 
 | |
|     def test_randint(self):
 | |
|         a = mx.random.randint(0, 1, [])
 | |
|         self.assertEqual(a.shape, [])
 | |
|         self.assertEqual(a.dtype, mx.int32)
 | |
| 
 | |
|         shape = [88]
 | |
|         low = mx.array(3)
 | |
|         high = mx.array(15)
 | |
| 
 | |
|         key = mx.random.key(0)
 | |
|         a = mx.random.randint(low, high, shape, key=key)
 | |
|         self.assertEqual(a.shape, shape)
 | |
|         self.assertEqual(a.dtype, mx.int32)
 | |
| 
 | |
|         # Check using the same key yields the same value
 | |
|         b = mx.random.randint(low, high, shape, key=key)
 | |
|         self.assertListEqual(a.tolist(), b.tolist())
 | |
| 
 | |
|         shape = [3, 4]
 | |
|         low = mx.reshape(mx.array([0] * 3), [3, 1])
 | |
|         high = mx.reshape(mx.array([12, 13, 14, 15]), [1, 4])
 | |
| 
 | |
|         a = mx.random.randint(low, high, shape)
 | |
|         self.assertEqual(a.shape, shape)
 | |
| 
 | |
|         a = mx.random.randint(-10, 10, [1000, 1000])
 | |
|         self.assertTrue(mx.all(-10 <= a).item() and mx.all(a < 10).item())
 | |
| 
 | |
|         a = mx.random.randint(10, -10, [1000, 1000])
 | |
|         self.assertTrue(mx.all(a == 10).item())
 | |
| 
 | |
|     def test_bernoulli(self):
 | |
|         a = mx.random.bernoulli()
 | |
|         self.assertEqual(a.shape, [])
 | |
|         self.assertEqual(a.dtype, mx.bool_)
 | |
| 
 | |
|         a = mx.random.bernoulli(mx.array(0.5), [5])
 | |
|         self.assertEqual(a.shape, [5])
 | |
| 
 | |
|         a = mx.random.bernoulli(mx.array([2.0, -2.0]))
 | |
|         self.assertEqual(a.tolist(), [True, False])
 | |
|         self.assertEqual(a.shape, [2])
 | |
| 
 | |
|         p = mx.array([0.1, 0.2, 0.3])
 | |
|         mx.reshape(p, [1, 3])
 | |
|         x = mx.random.bernoulli(p, [4, 3])
 | |
|         self.assertEqual(x.shape, [4, 3])
 | |
| 
 | |
|         with self.assertRaises(ValueError):
 | |
|             mx.random.bernoulli(p, [2])  # Bad shape
 | |
| 
 | |
|         with self.assertRaises(ValueError):
 | |
|             mx.random.bernoulli(0, [2])  # Bad type
 | |
| 
 | |
|     def test_truncated_normal(self):
 | |
|         a = mx.random.truncated_normal(-2.0, 2.0)
 | |
|         self.assertEqual(a.size, 1)
 | |
|         self.assertEqual(a.dtype, mx.float32)
 | |
| 
 | |
|         a = mx.random.truncated_normal(mx.array([]), mx.array([]))
 | |
|         self.assertEqual(a.dtype, mx.float32)
 | |
|         self.assertEqual(a.size, 0)
 | |
| 
 | |
|         lower = mx.reshape(mx.array([-2.0, 0.0]), [1, 2])
 | |
|         upper = mx.reshape(mx.array([0.0, 1.0, 2.0]), [3, 1])
 | |
|         a = mx.random.truncated_normal(lower, upper)
 | |
| 
 | |
|         self.assertEqual(a.shape, [3, 2])
 | |
|         self.assertTrue(mx.all(lower <= a).item() and mx.all(a <= upper).item())
 | |
| 
 | |
|         a = mx.random.truncated_normal(2.0, -2.0)
 | |
|         self.assertTrue(mx.all(a == 2.0).item())
 | |
| 
 | |
|         a = mx.random.truncated_normal(-3.0, 3.0, [542, 399])
 | |
|         self.assertEqual(a.shape, [542, 399])
 | |
| 
 | |
|         lower = mx.array([-2.0, -1.0])
 | |
|         higher = mx.array([1.0, 2.0, 3.0])
 | |
|         with self.assertRaises(ValueError):
 | |
|             mx.random.truncated_normal(lower, higher)  # Bad shape
 | |
| 
 | |
|     def test_gumbel(self):
 | |
|         samples = mx.random.gumbel(shape=(100, 100))
 | |
|         self.assertEqual(samples.shape, [100, 100])
 | |
|         self.assertEqual(samples.dtype, mx.float32)
 | |
|         mean = 0.5772
 | |
|         # Std deviation of the sample mean is small (<0.02),
 | |
|         # so this test is pretty conservative
 | |
|         self.assertTrue(mx.abs(mx.mean(samples) - mean) < 0.2)
 | |
| 
 | |
|     def test_categorical(self):
 | |
|         logits = mx.zeros((10, 20))
 | |
|         self.assertEqual(mx.random.categorical(logits, -1).shape, [10])
 | |
|         self.assertEqual(mx.random.categorical(logits, 0).shape, [20])
 | |
|         self.assertEqual(mx.random.categorical(logits, 1).shape, [10])
 | |
| 
 | |
|         out = mx.random.categorical(logits)
 | |
|         self.assertEqual(out.shape, [10])
 | |
|         self.assertEqual(out.dtype, mx.uint32)
 | |
|         self.assertTrue(mx.max(out).item() < 20)
 | |
| 
 | |
|         out = mx.random.categorical(logits, 0, [5, 20])
 | |
|         self.assertEqual(out.shape, [5, 20])
 | |
|         self.assertTrue(mx.max(out).item() < 10)
 | |
| 
 | |
|         out = mx.random.categorical(logits, 1, num_samples=7)
 | |
|         self.assertEqual(out.shape, [10, 7])
 | |
|         out = mx.random.categorical(logits, 0, num_samples=7)
 | |
|         self.assertEqual(out.shape, [20, 7])
 | |
| 
 | |
|         with self.assertRaises(ValueError):
 | |
|             mx.random.categorical(logits, shape=[10, 5], num_samples=5)
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     unittest.main()
 | 
