mirror of
				https://github.com/ml-explore/mlx.git
				synced 2025-10-31 16:21:27 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			120 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			120 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright © 2023 Apple Inc.
 | |
| 
 | |
| import unittest
 | |
| from itertools import combinations, permutations
 | |
| 
 | |
| import mlx.core as mx
 | |
| import mlx_tests
 | |
| import numpy as np
 | |
| 
 | |
| 
 | |
| class TestReduce(mlx_tests.MLXTestCase):
 | |
|     def test_axis_permutation_sums(self):
 | |
|         x_npy = np.random.randn(5, 5, 5, 5, 5).astype(np.float32)
 | |
|         x_mlx = mx.array(x_npy)
 | |
|         for t in permutations(range(5)):
 | |
|             with self.subTest(t=t):
 | |
|                 y_npy = np.transpose(x_npy, t)
 | |
|                 y_mlx = mx.transpose(x_mlx, t)
 | |
|                 for n in range(1, 6):
 | |
|                     for a in combinations(range(5), n):
 | |
|                         with self.subTest(a=a):
 | |
|                             z_npy = np.sum(y_npy, axis=a)
 | |
|                             z_mlx = mx.sum(y_mlx, axis=a)
 | |
|                             mx.eval(z_mlx)
 | |
|                             self.assertTrue(
 | |
|                                 np.allclose(z_npy, np.array(z_mlx), atol=1e-4)
 | |
|                             )
 | |
| 
 | |
|     def test_expand_sums(self):
 | |
|         x_npy = np.random.randn(5, 1, 5, 1, 5, 1).astype(np.float32)
 | |
|         x_mlx = mx.array(x_npy)
 | |
|         for m in range(1, 4):
 | |
|             for ax in combinations([1, 3, 5], m):
 | |
|                 shape = np.array([5, 1, 5, 1, 5, 1])
 | |
|                 shape[list(ax)] = 5
 | |
|                 shape = shape.tolist()
 | |
|                 with self.subTest(shape=shape):
 | |
|                     y_npy = np.broadcast_to(x_npy, shape)
 | |
|                     y_mlx = mx.broadcast_to(x_mlx, shape)
 | |
|                     for n in range(1, 7):
 | |
|                         for a in combinations(range(6), n):
 | |
|                             with self.subTest(a=a):
 | |
|                                 z_npy = np.sum(y_npy, axis=a) / 1000
 | |
|                                 z_mlx = mx.sum(y_mlx, axis=a) / 1000
 | |
|                                 mx.eval(z_mlx)
 | |
|                                 self.assertTrue(
 | |
|                                     np.allclose(z_npy, np.array(z_mlx), atol=1e-4)
 | |
|                                 )
 | |
| 
 | |
|     def test_dtypes(self):
 | |
|         int_dtypes = [
 | |
|             "int8",
 | |
|             "int16",
 | |
|             "int32",
 | |
|             "uint8",
 | |
|             "uint16",
 | |
|             "uint32",
 | |
|         ]
 | |
|         float_dtypes = ["float32"]
 | |
| 
 | |
|         for dtype in int_dtypes + float_dtypes:
 | |
|             with self.subTest(dtype=dtype):
 | |
|                 x = np.random.uniform(0, 2, size=(3, 3, 3)).astype(getattr(np, dtype))
 | |
|                 y = mx.array(x)
 | |
| 
 | |
|                 for op in ("sum", "prod", "min", "max"):
 | |
|                     with self.subTest(op=op):
 | |
| 
 | |
|                         np_op = getattr(np, op)
 | |
|                         mlx_op = getattr(mx, op)
 | |
| 
 | |
|                         for axes in (None, 0, 1, 2, (0, 1), (0, 2), (1, 2), (0, 1, 2)):
 | |
|                             with self.subTest(axes=axes):
 | |
|                                 if op in ("sum", "prod"):
 | |
|                                     r_np = np_op(
 | |
|                                         x, axis=axes, dtype=(getattr(np, dtype))
 | |
|                                     )
 | |
|                                 else:
 | |
|                                     r_np = np_op(x, axis=axes)
 | |
|                                 r_mlx = mlx_op(y, axis=axes)
 | |
|                                 mx.eval(r_mlx)
 | |
|                                 self.assertTrue(np.allclose(r_np, r_mlx, atol=1e-4))
 | |
| 
 | |
|     def test_arg_reduce(self):
 | |
|         dtypes = [
 | |
|             "uint8",
 | |
|             "uint16",
 | |
|             "uint32",
 | |
|             "uint64",
 | |
|             "int8",
 | |
|             "int16",
 | |
|             "int32",
 | |
|             "int64",
 | |
|             "float16",
 | |
|             "float32",
 | |
|         ]
 | |
|         for dtype in dtypes:
 | |
|             with self.subTest(dtype=dtype):
 | |
| 
 | |
|                 data = np.random.rand(10, 12, 13).astype(getattr(np, dtype))
 | |
|                 x = mx.array(data)
 | |
|                 for op in ["argmin", "argmax"]:
 | |
|                     for axis in range(3):
 | |
|                         for kd in [True, False]:
 | |
|                             a = getattr(mx, op)(x, axis, kd)
 | |
|                             b = getattr(np, op)(data, axis, keepdims=kd)
 | |
|                             self.assertEqual(a.tolist(), b.tolist())
 | |
| 
 | |
|                 for op in ["argmin", "argmax"]:
 | |
|                     a = getattr(mx, op)(x, keepdims=True)
 | |
|                     b = getattr(np, op)(data, keepdims=True)
 | |
|                     self.assertEqual(a.tolist(), b.tolist())
 | |
|                     a = getattr(mx, op)(x)
 | |
|                     b = getattr(np, op)(data)
 | |
|                     self.assertEqual(a.item(), b)
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     unittest.main(failfast=True)
 | 
