mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
* redesign for faster cpu/gpu synch * load + more async CPU * use command encoder API and move more ops to use it * make fence back-end generic + CPU only fence * faster build * fix async eval * fixes + handle temporaries * fix / improve cpu conv * remove unused status, fix siblings * fix extensions * fix * fix no cpu build * format * comments * fix perf regression, remove unecessary abort * fix events, task limit cpu * fix waiting * fix donation / temporaries in normalization
210 lines
5.3 KiB
C++
210 lines
5.3 KiB
C++
// Copyright © 2023-2024 Apple Inc.
|
|
|
|
#include <Accelerate/Accelerate.h>
|
|
|
|
#include "mlx/array.h"
|
|
#include "mlx/backend/common/utils.h"
|
|
#include "mlx/backend/cpu/gemm.h"
|
|
#include "mlx/dtype.h"
|
|
|
|
namespace mlx::core {
|
|
|
|
template <typename T>
|
|
constexpr BNNSDataType to_bnns_dtype();
|
|
|
|
template <>
|
|
constexpr BNNSDataType to_bnns_dtype<float>() {
|
|
return BNNSDataType(BNNSDataTypeFloatBit | 32);
|
|
}
|
|
template <>
|
|
constexpr BNNSDataType to_bnns_dtype<float16_t>() {
|
|
return BNNSDataType(BNNSDataTypeFloatBit | 16);
|
|
}
|
|
|
|
template <>
|
|
constexpr BNNSDataType to_bnns_dtype<bfloat16_t>() {
|
|
return BNNSDataTypeBFloat16;
|
|
}
|
|
|
|
template <typename T>
|
|
void matmul_bnns(
|
|
const T* a,
|
|
const T* b,
|
|
T* out,
|
|
bool a_transposed,
|
|
bool b_transposed,
|
|
size_t lda,
|
|
size_t ldb,
|
|
size_t ldc,
|
|
float alpha,
|
|
float beta,
|
|
size_t batch_size,
|
|
const Shape& a_shape,
|
|
const Strides& a_strides,
|
|
const Shape& b_shape,
|
|
const Strides& b_strides) {
|
|
auto ndim = a_shape.size();
|
|
size_t M = a_shape[ndim - 2];
|
|
size_t N = b_shape[ndim - 1];
|
|
size_t K = a_shape[ndim - 1];
|
|
|
|
BNNSDataType bnns_dtype = to_bnns_dtype<T>();
|
|
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
|
|
const BNNSLayerParametersBroadcastMatMul gemm_params{
|
|
/* float alpha = */ alpha,
|
|
/* float beta = */ beta,
|
|
/* bool transA = */ a_transposed,
|
|
/* bool transB = */ b_transposed,
|
|
/* bool quadratic = */ false,
|
|
/* bool a_is_weights = */ false,
|
|
/* bool b_is_weights = */ false,
|
|
/* BNNSNDArrayDescriptor iA_desc = */
|
|
BNNSNDArrayDescriptor{
|
|
/* BNNSNDArrayFlags flags = */ BNNSNDArrayFlagBackpropSet,
|
|
/* BNNSDataLayout layout = */ BNNSDataLayoutRowMajorMatrix,
|
|
|
|
/* size_t size[BNNS_MAX_TENSOR_DIMENSION] = */
|
|
{lda, (M * K) / lda, 0, 0, 0, 0, 0, 0},
|
|
/* size_t stride[BNNS_MAX_TENSOR_DIMENSION] = */
|
|
{1, lda, 0, 0, 0, 0, 0, 0},
|
|
|
|
/* void * _Nullable data = */ nullptr,
|
|
/* BNNSDataType data_type = */ bnns_dtype,
|
|
|
|
/* void * _Nullable table_data = */ nullptr,
|
|
/* BNNSDataType table_data_type = */ bnns_dtype,
|
|
|
|
/* float data_scale = */ 1.0,
|
|
/* float data_bias = */ 0.0,
|
|
},
|
|
/* BNNSNDArrayDescriptor iB_desc = */
|
|
BNNSNDArrayDescriptor{
|
|
/* BNNSNDArrayFlags flags = */ BNNSNDArrayFlagBackpropSet,
|
|
/* BNNSDataLayout layout = */ BNNSDataLayoutRowMajorMatrix,
|
|
|
|
/* size_t size[BNNS_MAX_TENSOR_DIMENSION] = */
|
|
{ldb, (K * N) / ldb, 0, 0, 0, 0, 0, 0},
|
|
/* size_t stride[BNNS_MAX_TENSOR_DIMENSION] = */
|
|
{1, ldb, 0, 0, 0, 0, 0, 0},
|
|
|
|
/* void * _Nullable data = */ nullptr,
|
|
/* BNNSDataType data_type = */ bnns_dtype,
|
|
|
|
/* void * _Nullable table_data = */ nullptr,
|
|
/* BNNSDataType table_data_type = */ bnns_dtype,
|
|
|
|
/* float data_scale = */ 1.0,
|
|
/* float data_bias = */ 0.0,
|
|
},
|
|
/* BNNSNDArrayDescriptor o_desc = */
|
|
BNNSNDArrayDescriptor{
|
|
/* BNNSNDArrayFlags flags = */ BNNSNDArrayFlagBackpropSet,
|
|
/* BNNSDataLayout layout = */ BNNSDataLayoutRowMajorMatrix,
|
|
|
|
/* size_t size[BNNS_MAX_TENSOR_DIMENSION] = */
|
|
{N, M, 0, 0, 0, 0, 0, 0},
|
|
/* size_t stride[BNNS_MAX_TENSOR_DIMENSION] = */
|
|
{1, N, 0, 0, 0, 0, 0, 0},
|
|
|
|
/* void * _Nullable data = */ nullptr,
|
|
/* BNNSDataType data_type = */ bnns_dtype,
|
|
|
|
/* void * _Nullable table_data = */ nullptr,
|
|
/* BNNSDataType table_data_type = */ bnns_dtype,
|
|
|
|
/* float data_scale = */ 1.0,
|
|
/* float data_bias = */ 0.0,
|
|
},
|
|
};
|
|
|
|
auto bnns_filter =
|
|
BNNSFilterCreateLayerBroadcastMatMul(&gemm_params, nullptr);
|
|
|
|
for (int i = 0; i < batch_size; ++i) {
|
|
BNNSFilterApplyTwoInput(
|
|
bnns_filter,
|
|
reinterpret_cast<const uint8_t*>(
|
|
a + elem_to_loc(M * K * i, a_shape, a_strides)),
|
|
reinterpret_cast<const uint8_t*>(
|
|
b + elem_to_loc(K * N * i, b_shape, b_strides)),
|
|
reinterpret_cast<uint8_t*>(out + M * N * i));
|
|
}
|
|
|
|
BNNSFilterDestroy(bnns_filter);
|
|
#pragma GCC diagnostic pop
|
|
}
|
|
|
|
template <>
|
|
void matmul<float16_t>(
|
|
const float16_t* a,
|
|
const float16_t* b,
|
|
float16_t* out,
|
|
bool a_transposed,
|
|
bool b_transposed,
|
|
size_t lda,
|
|
size_t ldb,
|
|
size_t ldc,
|
|
float alpha,
|
|
float beta,
|
|
size_t batch_size,
|
|
const Shape& a_shape,
|
|
const Strides& a_strides,
|
|
const Shape& b_shape,
|
|
const Strides& b_strides) {
|
|
matmul_bnns(
|
|
a,
|
|
b,
|
|
out,
|
|
a_transposed,
|
|
b_transposed,
|
|
lda,
|
|
ldb,
|
|
ldc,
|
|
alpha,
|
|
beta,
|
|
batch_size,
|
|
a_shape,
|
|
a_strides,
|
|
b_shape,
|
|
b_strides);
|
|
}
|
|
|
|
template <>
|
|
void matmul<bfloat16_t>(
|
|
const bfloat16_t* a,
|
|
const bfloat16_t* b,
|
|
bfloat16_t* out,
|
|
bool a_transposed,
|
|
bool b_transposed,
|
|
size_t lda,
|
|
size_t ldb,
|
|
size_t ldc,
|
|
float alpha,
|
|
float beta,
|
|
size_t batch_size,
|
|
const Shape& a_shape,
|
|
const Strides& a_strides,
|
|
const Shape& b_shape,
|
|
const Strides& b_strides) {
|
|
matmul_bnns(
|
|
a,
|
|
b,
|
|
out,
|
|
a_transposed,
|
|
b_transposed,
|
|
lda,
|
|
ldb,
|
|
ldc,
|
|
alpha,
|
|
beta,
|
|
batch_size,
|
|
a_shape,
|
|
a_strides,
|
|
b_shape,
|
|
b_strides);
|
|
}
|
|
|
|
} // namespace mlx::core
|