mirror of
https://github.com/ml-explore/mlx.git
synced 2025-07-14 20:41:13 +08:00

* redesign for faster cpu/gpu synch * load + more async CPU * use command encoder API and move more ops to use it * make fence back-end generic + CPU only fence * faster build * fix async eval * fixes + handle temporaries * fix / improve cpu conv * remove unused status, fix siblings * fix extensions * fix * fix no cpu build * format * comments * fix perf regression, remove unecessary abort * fix events, task limit cpu * fix waiting * fix donation / temporaries in normalization
86 lines
2.6 KiB
C++
86 lines
2.6 KiB
C++
// Copyright © 2023-2024 Apple Inc.
|
|
|
|
#include "mlx/allocator.h"
|
|
#include "mlx/backend/cpu/copy.h"
|
|
#include "mlx/backend/cpu/encoder.h"
|
|
#include "mlx/backend/cpu/lapack.h"
|
|
#include "mlx/linalg.h"
|
|
#include "mlx/primitives.h"
|
|
|
|
namespace mlx::core {
|
|
|
|
template <typename T>
|
|
void cholesky_impl(const array& a, array& factor, bool upper, Stream stream) {
|
|
// Lapack uses the column-major convention. We take advantage of the fact that
|
|
// the matrix should be symmetric:
|
|
// (A)ᵀ = A
|
|
// and that a column-major lower triangular matrix is a row-major upper
|
|
// triangular matrix, so uplo is the opposite of what we would expect from
|
|
// upper
|
|
|
|
// The decomposition is computed in place, so just copy the input to the
|
|
// output.
|
|
copy(
|
|
a,
|
|
factor,
|
|
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,
|
|
stream);
|
|
|
|
auto& encoder = cpu::get_command_encoder(stream);
|
|
encoder.set_output_array(factor);
|
|
encoder.dispatch([matrix = factor.data<T>(),
|
|
upper,
|
|
N = a.shape(-1),
|
|
size = a.size()]() mutable {
|
|
char uplo = (upper) ? 'L' : 'U';
|
|
size_t num_matrices = size / (N * N);
|
|
for (int i = 0; i < num_matrices; i++) {
|
|
// Compute Cholesky factorization.
|
|
int info;
|
|
potrf<T>(
|
|
/* uplo = */ &uplo,
|
|
/* n = */ &N,
|
|
/* a = */ matrix,
|
|
/* lda = */ &N,
|
|
/* info = */ &info);
|
|
|
|
// TODO: We do nothing when the matrix is not positive semi-definite
|
|
// because throwing an error would result in a crash. If we figure out how
|
|
// to catch errors from the implementation we should throw.
|
|
if (info < 0) {
|
|
std::stringstream msg;
|
|
msg << "[Cholesky::eval_cpu] Cholesky decomposition failed with error code "
|
|
<< info;
|
|
throw std::runtime_error(msg.str());
|
|
}
|
|
|
|
// Zero out the upper/lower triangle while advancing the pointer to the
|
|
// next matrix at the same time.
|
|
for (int row = 0; row < N; row++) {
|
|
if (upper) {
|
|
std::fill(matrix, matrix + row, 0);
|
|
} else {
|
|
std::fill(matrix + row + 1, matrix + N, 0);
|
|
}
|
|
matrix += N;
|
|
}
|
|
}
|
|
});
|
|
}
|
|
|
|
void Cholesky::eval_cpu(const std::vector<array>& inputs, array& output) {
|
|
switch (inputs[0].dtype()) {
|
|
case float32:
|
|
cholesky_impl<float>(inputs[0], output, upper_, stream());
|
|
break;
|
|
case float64:
|
|
cholesky_impl<double>(inputs[0], output, upper_, stream());
|
|
break;
|
|
default:
|
|
throw std::runtime_error(
|
|
"[Cholesky::eval_cpu] only supports float32 or float64.");
|
|
}
|
|
}
|
|
|
|
} // namespace mlx::core
|