mirror of
https://github.com/ml-explore/mlx.git
synced 2025-07-15 04:51:13 +08:00
161 lines
4.0 KiB
C++
161 lines
4.0 KiB
C++
// Copyright © 2023-2024 Apple Inc.
|
|
|
|
#include "mlx/allocator.h"
|
|
#include "mlx/backend/cpu/copy.h"
|
|
#include "mlx/backend/cpu/encoder.h"
|
|
#include "mlx/backend/cpu/lapack.h"
|
|
#include "mlx/primitives.h"
|
|
|
|
namespace mlx::core {
|
|
|
|
template <typename T>
|
|
void general_inv(T* inv, int N) {
|
|
int info;
|
|
auto ipiv = array::Data{allocator::malloc(sizeof(int) * N)};
|
|
// Compute LU factorization.
|
|
getrf<T>(
|
|
/* m = */ &N,
|
|
/* n = */ &N,
|
|
/* a = */ inv,
|
|
/* lda = */ &N,
|
|
/* ipiv = */ static_cast<int*>(ipiv.buffer.raw_ptr()),
|
|
/* info = */ &info);
|
|
|
|
if (info != 0) {
|
|
std::stringstream ss;
|
|
ss << "[Inverse::eval_cpu] LU factorization failed with error code "
|
|
<< info;
|
|
throw std::runtime_error(ss.str());
|
|
}
|
|
|
|
static const int lwork_query = -1;
|
|
T workspace_size = 0;
|
|
|
|
// Compute workspace size.
|
|
getri<T>(
|
|
/* m = */ &N,
|
|
/* a = */ nullptr,
|
|
/* lda = */ &N,
|
|
/* ipiv = */ nullptr,
|
|
/* work = */ &workspace_size,
|
|
/* lwork = */ &lwork_query,
|
|
/* info = */ &info);
|
|
|
|
if (info != 0) {
|
|
std::stringstream ss;
|
|
ss << "[Inverse::eval_cpu] LU workspace calculation failed with error code "
|
|
<< info;
|
|
throw std::runtime_error(ss.str());
|
|
}
|
|
|
|
const int lwork = workspace_size;
|
|
auto scratch = array::Data{allocator::malloc(sizeof(T) * lwork)};
|
|
|
|
// Compute inverse.
|
|
getri<T>(
|
|
/* m = */ &N,
|
|
/* a = */ inv,
|
|
/* lda = */ &N,
|
|
/* ipiv = */ static_cast<int*>(ipiv.buffer.raw_ptr()),
|
|
/* work = */ static_cast<T*>(scratch.buffer.raw_ptr()),
|
|
/* lwork = */ &lwork,
|
|
/* info = */ &info);
|
|
|
|
if (info != 0) {
|
|
std::stringstream ss;
|
|
ss << "[Inverse::eval_cpu] inversion failed with error code " << info;
|
|
throw std::runtime_error(ss.str());
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void tri_inv(T* inv, int N, bool upper) {
|
|
const char uplo = upper ? 'L' : 'U';
|
|
const char diag = 'N';
|
|
int info;
|
|
trtri<T>(
|
|
/* uplo = */ &uplo,
|
|
/* diag = */ &diag,
|
|
/* N = */ &N,
|
|
/* a = */ inv,
|
|
/* lda = */ &N,
|
|
/* info = */ &info);
|
|
|
|
// zero out the other triangle
|
|
if (upper) {
|
|
for (int i = 0; i < N; i++) {
|
|
std::fill(inv, inv + i, 0.0f);
|
|
inv += N;
|
|
}
|
|
} else {
|
|
for (int i = 0; i < N; i++) {
|
|
std::fill(inv + i + 1, inv + N, 0.0f);
|
|
inv += N;
|
|
}
|
|
}
|
|
|
|
if (info != 0) {
|
|
std::stringstream ss;
|
|
ss << "[Inverse::eval_cpu] triangular inversion failed with error code "
|
|
<< info;
|
|
throw std::runtime_error(ss.str());
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void inverse_impl(
|
|
const array& a,
|
|
array& inv,
|
|
bool tri,
|
|
bool upper,
|
|
Stream stream) {
|
|
// Lapack uses the column-major convention. We take advantage of the following
|
|
// identity to avoid transposing (see
|
|
// https://math.stackexchange.com/a/340234):
|
|
// (A⁻¹)ᵀ = (Aᵀ)⁻¹
|
|
|
|
// The inverse is computed in place, so just copy the input to the output.
|
|
copy(
|
|
a,
|
|
inv,
|
|
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,
|
|
stream);
|
|
|
|
const int N = a.shape(-1);
|
|
const size_t num_matrices = a.size() / (N * N);
|
|
|
|
auto& encoder = cpu::get_command_encoder(stream);
|
|
encoder.set_output_array(inv);
|
|
|
|
auto inv_ptr = inv.data<T>();
|
|
if (tri) {
|
|
encoder.dispatch([inv_ptr, N, num_matrices, upper]() {
|
|
for (int i = 0; i < num_matrices; i++) {
|
|
tri_inv<T>(inv_ptr + N * N * i, N, upper);
|
|
}
|
|
});
|
|
} else {
|
|
encoder.dispatch([inv_ptr, N, num_matrices]() {
|
|
for (int i = 0; i < num_matrices; i++) {
|
|
general_inv<T>(inv_ptr + N * N * i, N);
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
void Inverse::eval_cpu(const std::vector<array>& inputs, array& output) {
|
|
switch (inputs[0].dtype()) {
|
|
case float32:
|
|
inverse_impl<float>(inputs[0], output, tri_, upper_, stream());
|
|
break;
|
|
case float64:
|
|
inverse_impl<double>(inputs[0], output, tri_, upper_, stream());
|
|
break;
|
|
default:
|
|
throw std::runtime_error(
|
|
"[Inverse::eval_cpu] only supports float32 or float64.");
|
|
}
|
|
}
|
|
|
|
} // namespace mlx::core
|