mirror of
https://github.com/ml-explore/mlx.git
synced 2025-07-16 05:41:14 +08:00
155 lines
3.6 KiB
C++
155 lines
3.6 KiB
C++
// Copyright © 2023 Apple Inc.
|
|
|
|
#pragma once
|
|
#include "mlx/array.h"
|
|
#include "mlx/backend/common/ternary.h"
|
|
#include "mlx/backend/common/utils.h"
|
|
#include "mlx/backend/cpu/encoder.h"
|
|
|
|
namespace mlx::core {
|
|
|
|
template <typename T1, typename T2, typename T3, typename U, typename Op, int D>
|
|
void ternary_op_dims(
|
|
const T1* a,
|
|
const T2* b,
|
|
const T3* c,
|
|
U* out,
|
|
Op op,
|
|
const Shape& shape,
|
|
const Strides& a_strides,
|
|
const Strides& b_strides,
|
|
const Strides& c_strides,
|
|
const Strides& out_strides,
|
|
int axis) {
|
|
auto stride_a = a_strides[axis];
|
|
auto stride_b = b_strides[axis];
|
|
auto stride_c = c_strides[axis];
|
|
auto stride_out = out_strides[axis];
|
|
auto N = shape[axis];
|
|
|
|
for (int i = 0; i < N; i++) {
|
|
if constexpr (D > 1) {
|
|
ternary_op_dims<T1, T2, T3, U, Op, D - 1>(
|
|
a,
|
|
b,
|
|
c,
|
|
out,
|
|
op,
|
|
shape,
|
|
a_strides,
|
|
b_strides,
|
|
c_strides,
|
|
out_strides,
|
|
axis + 1);
|
|
} else {
|
|
*out = op(*a, *b, *c);
|
|
}
|
|
a += stride_a;
|
|
b += stride_b;
|
|
c += stride_c;
|
|
out += stride_out;
|
|
}
|
|
}
|
|
|
|
template <typename T1, typename T2, typename T3, typename U, typename Op>
|
|
void ternary_op_dispatch_dims(
|
|
const T1* a_ptr,
|
|
const T2* b_ptr,
|
|
const T3* c_ptr,
|
|
U* out_ptr,
|
|
Op op,
|
|
size_t size,
|
|
Shape& shape,
|
|
std::vector<Strides>& strides) {
|
|
const auto& a_strides = strides[0];
|
|
const auto& b_strides = strides[1];
|
|
const auto& c_strides = strides[2];
|
|
const auto& out_strides = strides[3];
|
|
int ndim = shape.size();
|
|
switch (ndim) {
|
|
case 1:
|
|
ternary_op_dims<T1, T2, T3, U, Op, 1>(
|
|
a_ptr,
|
|
b_ptr,
|
|
c_ptr,
|
|
out_ptr,
|
|
op,
|
|
shape,
|
|
a_strides,
|
|
b_strides,
|
|
c_strides,
|
|
out_strides,
|
|
0);
|
|
return;
|
|
case 2:
|
|
ternary_op_dims<T1, T2, T3, U, Op, 2>(
|
|
a_ptr,
|
|
b_ptr,
|
|
c_ptr,
|
|
out_ptr,
|
|
op,
|
|
shape,
|
|
a_strides,
|
|
b_strides,
|
|
c_strides,
|
|
out_strides,
|
|
0);
|
|
return;
|
|
}
|
|
|
|
ContiguousIterator a_it(shape, a_strides, ndim - 2);
|
|
ContiguousIterator b_it(shape, b_strides, ndim - 2);
|
|
ContiguousIterator c_it(shape, c_strides, ndim - 2);
|
|
auto stride = out_strides[ndim - 3];
|
|
for (size_t elem = 0; elem < size; elem += stride) {
|
|
ternary_op_dims<T1, T2, T3, U, Op, 2>(
|
|
a_ptr + a_it.loc,
|
|
b_ptr + b_it.loc,
|
|
c_ptr + c_it.loc,
|
|
out_ptr + elem,
|
|
op,
|
|
shape,
|
|
a_strides,
|
|
b_strides,
|
|
c_strides,
|
|
out_strides,
|
|
ndim - 2);
|
|
a_it.step();
|
|
b_it.step();
|
|
c_it.step();
|
|
}
|
|
}
|
|
|
|
template <typename T1, typename T2, typename T3, typename U, typename Op>
|
|
void ternary_op(
|
|
const array& a,
|
|
const array& b,
|
|
const array& c,
|
|
array& out,
|
|
Op op,
|
|
TernaryOpType topt) {
|
|
const T1* a_ptr = a.data<T1>();
|
|
const T2* b_ptr = b.data<T2>();
|
|
const T3* c_ptr = c.data<T3>();
|
|
U* out_ptr = out.data<U>();
|
|
|
|
if (topt == TernaryOpType::ScalarScalarScalar) {
|
|
*out_ptr = op(*a_ptr, *b_ptr, *c_ptr);
|
|
} else if (topt == TernaryOpType::VectorVectorVector) {
|
|
for (size_t i = 0; i < out.size(); ++i) {
|
|
*out_ptr = op(*a_ptr, *b_ptr, *c_ptr);
|
|
a_ptr++;
|
|
b_ptr++;
|
|
c_ptr++;
|
|
out_ptr++;
|
|
}
|
|
} else {
|
|
auto [shape, strides] = collapse_contiguous_dims(
|
|
a.shape(), {a.strides(), b.strides(), c.strides(), out.strides()});
|
|
ternary_op_dispatch_dims<T1, T2, T3, U>(
|
|
a_ptr, b_ptr, c_ptr, out_ptr, op, out.size(), shape, strides);
|
|
}
|
|
}
|
|
|
|
} // namespace mlx::core
|