mlx/mlx/backend/metal/kernels/softmax.h
2024-10-08 09:54:02 -07:00

191 lines
5.9 KiB
C++

// Copyright © 2023-2024 Apple Inc.
template <typename T>
inline T softmax_exp(T x) {
// Softmax doesn't need high precision exponential cause x is gonna be in
// (-oo, 0] anyway and subsequently it will be divided by sum(exp(x_i)).
return fast::exp(x);
}
template <typename T, typename AccT = T, int N_READS = SOFTMAX_N_READS>
[[kernel]] void softmax_single_row(
const device T* in,
device T* out,
constant int& axis_size,
uint gid [[threadgroup_position_in_grid]],
uint _lid [[thread_position_in_threadgroup]],
uint simd_lane_id [[thread_index_in_simdgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
int lid = _lid;
constexpr int SIMD_SIZE = 32;
threadgroup AccT local_max[SIMD_SIZE];
threadgroup AccT local_normalizer[SIMD_SIZE];
AccT ld[N_READS];
in += gid * size_t(axis_size) + lid * N_READS;
if (lid * N_READS + N_READS <= axis_size) {
for (int i = 0; i < N_READS; i++) {
ld[i] = AccT(in[i]);
}
} else {
for (int i = 0; i < N_READS; i++) {
ld[i] =
((lid * N_READS + i) < axis_size) ? AccT(in[i]) : Limits<AccT>::min;
}
}
if (simd_group_id == 0) {
local_max[simd_lane_id] = Limits<AccT>::min;
local_normalizer[simd_lane_id] = 0;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// Get the max
AccT maxval = Limits<AccT>::finite_min;
for (int i = 0; i < N_READS; i++) {
maxval = (maxval < ld[i]) ? ld[i] : maxval;
}
maxval = simd_max(maxval);
if (simd_lane_id == 0) {
local_max[simd_group_id] = maxval;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (simd_group_id == 0) {
maxval = simd_max(local_max[simd_lane_id]);
if (simd_lane_id == 0) {
local_max[0] = maxval;
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
maxval = local_max[0];
// Compute exp(x_i - maxval) and store the partial sums in local_normalizer
AccT normalizer = 0;
for (int i = 0; i < N_READS; i++) {
AccT exp_x = softmax_exp(ld[i] - maxval);
ld[i] = exp_x;
normalizer += exp_x;
}
normalizer = simd_sum(normalizer);
if (simd_lane_id == 0) {
local_normalizer[simd_group_id] = normalizer;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (simd_group_id == 0) {
normalizer = simd_sum(local_normalizer[simd_lane_id]);
if (simd_lane_id == 0) {
local_normalizer[0] = normalizer;
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
normalizer = 1 / local_normalizer[0];
// Normalize and write to the output
out += gid * size_t(axis_size) + lid * N_READS;
if (lid * N_READS + N_READS <= axis_size) {
for (int i = 0; i < N_READS; i++) {
out[i] = T(ld[i] * normalizer);
}
} else {
for (int i = 0; i < N_READS; i++) {
if ((lid * N_READS + i) < axis_size) {
out[i] = T(ld[i] * normalizer);
}
}
}
}
template <typename T, typename AccT = T, int N_READS = SOFTMAX_N_READS>
[[kernel]] void softmax_looped(
const device T* in,
device T* out,
constant int& axis_size,
uint gid [[threadgroup_position_in_grid]],
uint lid [[thread_position_in_threadgroup]],
uint lsize [[threads_per_threadgroup]],
uint simd_lane_id [[thread_index_in_simdgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
in += gid * size_t(axis_size);
constexpr int SIMD_SIZE = 32;
threadgroup AccT local_max[SIMD_SIZE];
threadgroup AccT local_normalizer[SIMD_SIZE];
// Get the max and the normalizer in one go
AccT prevmax;
AccT maxval = Limits<AccT>::finite_min;
AccT normalizer = 0;
for (int r = 0; r < static_cast<int>(ceildiv(axis_size, N_READS * lsize));
r++) {
int offset = r * lsize * N_READS + lid * N_READS;
AccT vals[N_READS];
if (offset + N_READS <= axis_size) {
for (int i = 0; i < N_READS; i++) {
vals[i] = AccT(in[offset + i]);
}
} else {
for (int i = 0; i < N_READS; i++) {
vals[i] = (offset + i < axis_size) ? AccT(in[offset + i])
: Limits<AccT>::finite_min;
}
}
prevmax = maxval;
for (int i = 0; i < N_READS; i++) {
maxval = (maxval < vals[i]) ? vals[i] : maxval;
}
normalizer *= softmax_exp(prevmax - maxval);
for (int i = 0; i < N_READS; i++) {
normalizer += softmax_exp(vals[i] - maxval);
}
}
// Now we got partial normalizer of N_READS * ceildiv(axis_size, N_READS *
// lsize) parts. We need to combine them.
// 1. We start by finding the max across simd groups
// 2. We then change the partial normalizers to account for a possible
// change in max
// 3. We sum all normalizers
prevmax = maxval;
maxval = simd_max(maxval);
normalizer *= softmax_exp(prevmax - maxval);
normalizer = simd_sum(normalizer);
// Now the normalizer and max value is correct for each simdgroup. We write
// them shared memory and combine them.
prevmax = maxval;
if (simd_lane_id == 0) {
local_max[simd_group_id] = maxval;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
maxval = simd_max(local_max[simd_lane_id]);
normalizer *= softmax_exp(prevmax - maxval);
if (simd_lane_id == 0) {
local_normalizer[simd_group_id] = normalizer;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
normalizer = simd_sum(local_normalizer[simd_lane_id]);
normalizer = 1 / normalizer;
// Finally given the normalizer and max value we can directly write the
// softmax output
out += gid * size_t(axis_size);
for (int r = 0; r < static_cast<int>(ceildiv(axis_size, N_READS * lsize));
r++) {
int offset = r * lsize * N_READS + lid * N_READS;
if (offset + N_READS <= axis_size) {
for (int i = 0; i < N_READS; i++) {
out[offset + i] = T(softmax_exp(in[offset + i] - maxval) * normalizer);
}
} else {
for (int i = 0; i < N_READS; i++) {
if (offset + i < axis_size) {
out[offset + i] =
T(softmax_exp(in[offset + i] - maxval) * normalizer);
}
}
}
}
}