mirror of
				https://github.com/ml-explore/mlx.git
				synced 2025-11-01 00:28:11 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			714 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			714 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright © 2023 Apple Inc.
 | |
| 
 | |
| #include <numeric>
 | |
| 
 | |
| #include "doctest/doctest.h"
 | |
| 
 | |
| #include "mlx/mlx.h"
 | |
| 
 | |
| using namespace mlx::core;
 | |
| 
 | |
| TEST_CASE("test random key") {
 | |
|   auto key = random::key(0);
 | |
|   CHECK(array_equal(key, array({0, 0})).item<bool>());
 | |
| 
 | |
|   key = random::key(1);
 | |
|   CHECK(array_equal(key, array({0, 1})).item<bool>());
 | |
| 
 | |
|   int64_t seed = static_cast<int64_t>(1) << 32;
 | |
|   key = random::key(seed);
 | |
|   CHECK(array_equal(key, array({1, 0})).item<bool>());
 | |
| 
 | |
|   key = random::key(seed + 1);
 | |
|   CHECK(array_equal(key, array({1, 1})).item<bool>());
 | |
| }
 | |
| 
 | |
| TEST_CASE("test global rng") {
 | |
|   random::seed(4);
 | |
|   auto x = random::bits({});
 | |
|   auto y = random::bits({});
 | |
| 
 | |
|   random::seed(4);
 | |
|   auto a = random::bits({});
 | |
|   auto b = random::bits({});
 | |
| 
 | |
|   CHECK_EQ(x.item<uint32_t>(), a.item<uint32_t>());
 | |
|   CHECK_EQ(y.item<uint32_t>(), b.item<uint32_t>());
 | |
| }
 | |
| 
 | |
| TEST_CASE("test random split") {
 | |
|   auto [key, subkey] = random::split(random::key(0));
 | |
|   CHECK(array_equal(key, array({4146024105u, 967050713u})).item<bool>());
 | |
|   CHECK(array_equal(subkey, array({2718843009u, 1272950319u})).item<bool>());
 | |
| 
 | |
|   auto keys = random::split(random::key(0), 3);
 | |
|   auto expected = array(
 | |
|       {2467461003u,
 | |
|        428148500u,
 | |
|        3186719485u,
 | |
|        3840466878u,
 | |
|        2562233961u,
 | |
|        1946702221u},
 | |
|       {3, 2});
 | |
|   CHECK(array_equal(keys, expected).item<bool>());
 | |
| }
 | |
| 
 | |
| TEST_CASE("test random bits") {
 | |
|   // Test shapes, types, and sizes
 | |
|   {
 | |
|     auto key = random::key(0);
 | |
|     auto x = random::bits({}, key);
 | |
|     CHECK_EQ(x.size(), 1);
 | |
|     CHECK_EQ(x.dtype(), uint32);
 | |
| 
 | |
|     x = random::bits({0}, key);
 | |
|     CHECK(array_equal(x, array({})).item<bool>());
 | |
| 
 | |
|     // Check wrong key type or shape
 | |
|     key = array({0, 0});
 | |
|     CHECK_THROWS_AS(random::uniform({}, key), std::invalid_argument);
 | |
|     key = array({0, 0}, {1, 2});
 | |
|     CHECK_THROWS_AS(random::uniform({}, key), std::invalid_argument);
 | |
|     key = array({0u, 0u, 0u}, {3, 1});
 | |
|     CHECK_THROWS_AS(random::uniform({}, key), std::invalid_argument);
 | |
|     key = array({0u, 0u}, {2, 1});
 | |
|     CHECK_THROWS_AS(random::uniform({}, key), std::invalid_argument);
 | |
|   }
 | |
| 
 | |
|   // Expected bits in the following tests were generated from
 | |
|   // Jax's Threefry 2x32 implementation using the following in
 | |
|   // python:
 | |
|   //
 | |
|   // ```
 | |
|   //   import jax
 | |
|   //   import jax.prng
 | |
|   //   shape = (SET THIS)
 | |
|   //   seed = (SET THIS)
 | |
|   //   width = (SET THIS)
 | |
|   //   key = jax.random.PRNGKey(seed)
 | |
|   //   print(jax.prng.threefry_prng_impl.random_bits(key, width, shape))
 | |
| 
 | |
|   {
 | |
|     auto key = random::key(0);
 | |
|     auto x = random::bits({}, key);
 | |
|     auto y = random::bits({}, key);
 | |
|     CHECK_EQ(x.item<uint32_t>(), 1797259609u);
 | |
|     CHECK_EQ(x.item<uint32_t>(), y.item<uint32_t>());
 | |
| 
 | |
|     x = random::bits({}, 2, key);
 | |
|     CHECK_EQ(x.item<uint16_t>(), 345);
 | |
| 
 | |
|     x = random::bits({}, 1, key);
 | |
|     CHECK_EQ(x.item<uint8_t>(), 89);
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     auto key = random::key(1);
 | |
|     auto x = random::bits({}, key);
 | |
|     CHECK_EQ(x.item<uint32_t>(), 507451445u);
 | |
| 
 | |
|     x = random::bits({}, 2, key);
 | |
|     CHECK_EQ(x.item<uint16_t>(), 6197);
 | |
| 
 | |
|     x = random::bits({}, 1, key);
 | |
|     CHECK_EQ(x.item<uint8_t>(), 53);
 | |
| 
 | |
|     CHECK_THROWS(random::bits({}, 0, key));
 | |
|     CHECK_THROWS(random::bits({}, 5, key));
 | |
|     CHECK_THROWS(random::bits({}, -1, key));
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     auto key = random::key(0);
 | |
|     auto x = random::bits({3, 1}, key);
 | |
|     auto expected = array({4146024105u, 1351547692u, 2718843009u}, {3, 1});
 | |
|     CHECK(array_equal(x, expected).item<bool>());
 | |
| 
 | |
|     x = random::bits({5}, 2, key);
 | |
|     expected = array({20137, 63263, 64300, 20622, 16513}, uint16);
 | |
|     CHECK(array_equal(x, expected).item<bool>());
 | |
|     expected = array({20137, 63263, 64300, 20622, 16513, 41486}, uint16);
 | |
|     x = random::bits({6}, 2, key);
 | |
|     CHECK(array_equal(x, expected).item<bool>());
 | |
|     expected = array({20137, 63263, 1497, 14756, 16513, 41486, 44591}, uint16);
 | |
|     x = random::bits({7}, 2, key);
 | |
|     CHECK(array_equal(x, expected).item<bool>());
 | |
|     x = random::bits({8}, 2, key);
 | |
|     expected =
 | |
|         array({20137, 63263, 1497, 14756, 16513, 41486, 44591, 19423}, uint16);
 | |
|     CHECK(array_equal(x, expected).item<bool>());
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     auto key = array({0u, 0u, 1u, 1u}, {2, 2});
 | |
|     auto shape = std::vector<int>{3};
 | |
|     auto fn = [&shape](array k) { return random::bits(shape, k); };
 | |
| 
 | |
|     auto expected = array(
 | |
|         {4146024105u,
 | |
|          1351547692u,
 | |
|          2718843009u,
 | |
|          3725146706u,
 | |
|          1802982961u,
 | |
|          1349634643u},
 | |
|         {2, 3});
 | |
|     CHECK(array_equal(vmap(fn)(key), expected).item<bool>());
 | |
|     expected = array(
 | |
|         {2441914641u,
 | |
|          1110694964u,
 | |
|          3819641963u,
 | |
|          2441914641u,
 | |
|          1110694964u,
 | |
|          3819641963u},
 | |
|         {2, 3});
 | |
|     CHECK(array_equal(vmap(fn, 1)(key), expected).item<bool>());
 | |
| 
 | |
|     // Vmap twice
 | |
|     key = array(
 | |
|         {0u,
 | |
|          0u,
 | |
|          1u,
 | |
|          1u,
 | |
|          2u,
 | |
|          2u,
 | |
| 
 | |
|          3u,
 | |
|          3u,
 | |
|          4u,
 | |
|          4u,
 | |
|          5u,
 | |
|          5u},
 | |
|         {3, 2, 2});
 | |
|     shape = {2};
 | |
|     auto out = vmap(vmap(fn))(key);
 | |
|     expected = array(
 | |
|         {928981903u,
 | |
|          3453687069u,
 | |
|          3606183818u,
 | |
|          460005496u,
 | |
| 
 | |
|          2799733733u,
 | |
|          856293553u,
 | |
|          4081856343u,
 | |
|          3445925136u,
 | |
| 
 | |
|          2775548010u,
 | |
|          1430281703u,
 | |
|          305173070u,
 | |
|          2615843348u},
 | |
|         {3, 2, 2});
 | |
|     CHECK(array_equal(out, expected).item<bool>());
 | |
| 
 | |
|     out = vmap(vmap(fn, 1), 0)(key);
 | |
|     expected = array(
 | |
|         {1948878966u,
 | |
|          4237131848u,
 | |
|          1948878966u,
 | |
|          4237131848u,
 | |
| 
 | |
|          2531170506u,
 | |
|          1858648356u,
 | |
|          2531170506u,
 | |
|          1858648356u,
 | |
| 
 | |
|          740561898u,
 | |
|          4234094099u,
 | |
|          740561898u,
 | |
|          4234094099u},
 | |
|         {3, 2, 2});
 | |
|     CHECK(array_equal(out, expected).item<bool>());
 | |
|   }
 | |
| 
 | |
|   // Vmap smaller type
 | |
|   {
 | |
|     auto key = array({0u, 0u, 1u, 1u}, {2, 2});
 | |
|     auto fn = [](array k) { return random::bits({5}, 2, k); };
 | |
| 
 | |
|     auto expected = array(
 | |
|         {4146024105u,
 | |
|          1351547692u,
 | |
|          2718843009u,
 | |
|          3725146706u,
 | |
|          1802982961u,
 | |
|          1349634643u},
 | |
|         {2, 3});
 | |
|     auto out = vmap(fn)(key);
 | |
|     auto x1 = random::bits({5}, 2, take(key, array(0), 0));
 | |
|     auto x2 = random::bits({5}, 2, take(key, array(1), 0));
 | |
| 
 | |
|     CHECK(array_equal(take(out, array(0), 0), x1).item<bool>());
 | |
|     CHECK(array_equal(take(out, array(1), 0), x2).item<bool>());
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST_CASE("test random uniform") {
 | |
|   // Test shapes, types, and sizes
 | |
|   {
 | |
|     auto x = random::uniform({});
 | |
|     CHECK_EQ(x.size(), 1);
 | |
|     CHECK_EQ(x.dtype(), float32);
 | |
| 
 | |
|     x = random::uniform({}, float16);
 | |
|     CHECK_EQ(x.size(), 1);
 | |
|     CHECK_EQ(x.dtype(), float16);
 | |
| 
 | |
|     x = random::uniform({0});
 | |
|     CHECK(array_equal(x, array({})).item<bool>());
 | |
| 
 | |
|     // Non float type throws
 | |
|     CHECK_THROWS_AS(random::uniform({}, int32), std::invalid_argument);
 | |
| 
 | |
|     // dtype respected
 | |
|     x = random::uniform(-.1, .1, {0}, bfloat16);
 | |
|     CHECK_EQ(x.dtype(), bfloat16);
 | |
| 
 | |
|     // Check broadcasting
 | |
|     x = random::uniform(zeros({3, 1}), ones({1, 3}), {3, 3});
 | |
|     CHECK_EQ(x.shape(), std::vector<int>{3, 3});
 | |
|     CHECK_THROWS_AS(
 | |
|         random::uniform(zeros({3, 3}), 1.0, {1, 3}), std::invalid_argument);
 | |
|     CHECK_THROWS_AS(
 | |
|         random::uniform(zeros({3, 3}), 1.0, {2, 3}), std::invalid_argument);
 | |
|     CHECK_THROWS_AS(
 | |
|         random::uniform(zeros({3, 1}), ones({1, 3}), {1, 3}),
 | |
|         std::invalid_argument);
 | |
| 
 | |
|     // Check wrong key type or shape
 | |
|     auto key = array({0, 0});
 | |
|     CHECK_THROWS_AS(random::uniform({}, key), std::invalid_argument);
 | |
|     key = array({0, 0}, {1, 2});
 | |
|     CHECK_THROWS_AS(random::uniform({}, key), std::invalid_argument);
 | |
|     key = array({0u, 0u, 0u}, {3, 1});
 | |
|     CHECK_THROWS_AS(random::uniform({}, key), std::invalid_argument);
 | |
|     key = array({0u, 0u}, {2, 1});
 | |
|     CHECK_THROWS_AS(random::uniform({}, key), std::invalid_argument);
 | |
|   }
 | |
| 
 | |
|   // Expected bits in the following tests were generated from
 | |
|   // Jax's Threefry 2x32 implementation using the following in
 | |
|   // python:
 | |
|   //
 | |
|   // ```
 | |
|   //   import jax
 | |
|   //   import jax.prng
 | |
|   //   shape = (SET THIS)
 | |
|   //   seed = (SET THIS)
 | |
|   //   key = jax.random.PRNGKey(seed)
 | |
|   //   print(jax.prng.threefry_prng_impl.random_bits(key, 32, shape))
 | |
| 
 | |
|   constexpr auto to_float = [](uint32_t n) {
 | |
|     return static_cast<float>(n) / UINT32_MAX;
 | |
|   };
 | |
| 
 | |
|   {
 | |
|     auto key = random::key(0);
 | |
|     auto x = random::uniform({}, key);
 | |
|     auto y = random::uniform({}, key);
 | |
|     auto expected = to_float(1797259609);
 | |
|     CHECK_EQ(x.item<float>(), expected);
 | |
|     CHECK_EQ(x.item<float>(), y.item<float>());
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     auto key = random::key(1);
 | |
|     auto x = random::uniform({}, key);
 | |
|     auto expected = to_float(507451445);
 | |
|     CHECK_EQ(x.item<float>(), expected);
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     auto key = random::key(0);
 | |
|     auto x = random::uniform({3, 1}, key);
 | |
|     auto expected = array(
 | |
|         {to_float(4146024105), to_float(1351547692), to_float(2718843009)},
 | |
|         {3, 1});
 | |
|     CHECK(array_equal(x, expected).item<bool>());
 | |
|   }
 | |
| 
 | |
|   // Check vmap
 | |
|   {
 | |
|     auto key = random::key(0);
 | |
|     auto fun = [](array k, array low) {
 | |
|       return random::uniform(low, 1, {3}, float32, k);
 | |
|     };
 | |
|     auto out = vmap(fun, -1)(key, zeros({2, 3}));
 | |
|     CHECK_EQ(out.shape(), std::vector<int>{2, 3});
 | |
| 
 | |
|     key = zeros({2, 2}, uint32);
 | |
|     out = vmap(fun)(key, zeros({2, 3}));
 | |
|     CHECK_EQ(out.shape(), std::vector<int>{2, 3});
 | |
|   }
 | |
| 
 | |
|   // Check bounds are respected
 | |
|   {
 | |
|     auto key = random::key(128291);
 | |
|     auto out = random::uniform(array(-1.0f), array(1.0f), {100}, float32, key);
 | |
|     CHECK(all(less(out, array(1.0f))).item<bool>());
 | |
|     CHECK(all(greater_equal(out, array(-1.0f))).item<bool>());
 | |
|   }
 | |
| 
 | |
|   // Check float16
 | |
|   {
 | |
|     auto key = random::key(0);
 | |
|     auto out = random::uniform({100}, float16, key);
 | |
|     CHECK_EQ(out.dtype(), float16);
 | |
|     CHECK(all(less(out, array(1.0f))).item<bool>());
 | |
|     CHECK(all(greater_equal(out, array(0.0f))).item<bool>());
 | |
|     CHECK(!all(equal(out, array(0.0f))).item<bool>());
 | |
|     CHECK(abs(float(mean(out).item<float16_t>()) - 0.5f) < 0.02);
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     auto key = random::key(0);
 | |
|     auto out = random::uniform({100}, bfloat16, key);
 | |
|     CHECK_EQ(out.dtype(), bfloat16);
 | |
|     CHECK(all(less(out, array(1.0f))).item<bool>());
 | |
|     CHECK(all(greater_equal(out, array(0.0f))).item<bool>());
 | |
|     CHECK(!all(equal(out, array(0.0f))).item<bool>());
 | |
|     CHECK(abs(float(mean(out).item<bfloat16_t>()) - 0.5f) < 0.02);
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST_CASE("test random normal") {
 | |
|   // Test shapes, types, and sizes
 | |
|   {
 | |
|     auto x = random::normal({});
 | |
|     CHECK_EQ(x.size(), 1);
 | |
|     CHECK_EQ(x.dtype(), float32);
 | |
| 
 | |
|     x = random::uniform({0});
 | |
|     CHECK(array_equal(x, array({})).item<bool>());
 | |
| 
 | |
|     // Non float type throws
 | |
|     CHECK_THROWS_AS(random::normal({}, int32), std::invalid_argument);
 | |
| 
 | |
|     // Check wrong key type or shape
 | |
|     auto key = array({0, 0});
 | |
|     CHECK_THROWS_AS(random::normal({}, key), std::invalid_argument);
 | |
|     key = array({0, 0}, {1, 2});
 | |
|     CHECK_THROWS_AS(random::normal({}, key), std::invalid_argument);
 | |
|     key = array({0u, 0u, 0u}, {3, 1});
 | |
|     CHECK_THROWS_AS(random::normal({}, key), std::invalid_argument);
 | |
|     key = array({0u, 0u}, {2, 1});
 | |
|     CHECK_THROWS_AS(random::normal({}, key), std::invalid_argument);
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     constexpr float inf = std::numeric_limits<float>::infinity();
 | |
|     auto key = random::key(128291);
 | |
|     auto out = random::normal({100}, key);
 | |
|     CHECK(all(less(abs(out), array(inf))).item<bool>());
 | |
|     CHECK(abs(mean(out).item<float>()) < 0.1);
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     constexpr float inf = std::numeric_limits<float>::infinity();
 | |
|     auto key = random::key(128291);
 | |
|     auto out = random::normal({200}, float16, key);
 | |
|     CHECK_EQ(out.dtype(), float16);
 | |
|     CHECK(all(less(abs(out), array(inf))).item<bool>());
 | |
|     CHECK(abs(float(mean(out).item<float16_t>())) < 0.1);
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     constexpr float inf = std::numeric_limits<float>::infinity();
 | |
|     auto key = random::key(128291);
 | |
|     auto out = random::normal({200}, bfloat16, key);
 | |
|     CHECK_EQ(out.dtype(), bfloat16);
 | |
|     CHECK(all(less(abs(out), array(inf))).item<bool>());
 | |
|     CHECK(abs(float(mean(out).item<bfloat16_t>())) < 0.1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST_CASE("test random multivariate_normal") {
 | |
|   {
 | |
|     auto mean = zeros({3});
 | |
|     auto cov = eye(3);
 | |
|     auto x = random::multivariate_normal(mean, cov, {1000}, float32);
 | |
|     CHECK_EQ(x.shape(), std::vector<int>({1000, 3}));
 | |
|     CHECK_EQ(x.dtype(), float32);
 | |
|   }
 | |
| 
 | |
|   // Limit case
 | |
|   {
 | |
|     auto mean = array({0, 0});
 | |
|     auto cov = array({1., -1, -.1, 1.});
 | |
|     cov = reshape(cov, {2, 2});
 | |
|     auto x = random::multivariate_normal(mean, cov, {1}, float32);
 | |
|     CHECK_EQ(x.shape(), std::vector<int>({1, 2}));
 | |
|     CHECK_EQ(x.dtype(), float32);
 | |
|   }
 | |
| 
 | |
|   // Check wrong shapes
 | |
|   {
 | |
|     auto mean = zeros({3, 1});
 | |
|     auto cov = eye(3);
 | |
|     CHECK_THROWS_AS(
 | |
|         random::multivariate_normal(
 | |
|             mean,
 | |
|             cov,
 | |
|             {
 | |
|                 1000,
 | |
|             },
 | |
|             float32),
 | |
|         std::invalid_argument);
 | |
|   }
 | |
|   {
 | |
|     auto mean = zeros({3});
 | |
|     auto cov = zeros({1, 2, 3, 3});
 | |
|     auto x = random::multivariate_normal(mean, cov, {1000, 2}, float32);
 | |
|     CHECK_EQ(x.shape(), std::vector<int>({1000, 2, 3}));
 | |
|   }
 | |
|   {
 | |
|     auto mean = zeros({3});
 | |
|     auto cov = eye(4);
 | |
|     CHECK_THROWS_AS(
 | |
|         random::multivariate_normal(mean, cov, {1000, 3}, float32),
 | |
|         std::invalid_argument);
 | |
|   }
 | |
| 
 | |
|   // Check wrong type
 | |
|   {
 | |
|     auto mean = zeros({3});
 | |
|     auto cov = eye(3);
 | |
|     CHECK_THROWS_AS(
 | |
|         random::multivariate_normal(mean, cov, {1000, 3}, float16),
 | |
|         std::invalid_argument);
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST_CASE("test random randint") {
 | |
|   CHECK_THROWS_AS(
 | |
|       random::randint(array(3), array(5), {1}, float32), std::invalid_argument);
 | |
| 
 | |
|   auto x = random::randint(0, 10, {}, uint32);
 | |
|   CHECK_EQ(x.size(), 1);
 | |
|   CHECK_EQ(x.dtype(), uint32);
 | |
| 
 | |
|   x = random::randint(0, 2, {}, bool_);
 | |
|   CHECK_EQ(x.size(), 1);
 | |
|   CHECK_EQ(x.dtype(), bool_);
 | |
| 
 | |
|   x = random::randint(0, 2, {}, int32);
 | |
|   CHECK_EQ(x.size(), 1);
 | |
|   CHECK_EQ(x.dtype(), int32);
 | |
| 
 | |
|   x = random::randint(0, 2, {}, int64);
 | |
|   CHECK_EQ(x.size(), 1);
 | |
|   CHECK_EQ(x.dtype(), int64);
 | |
| 
 | |
|   // Check all in bounds
 | |
|   auto low = -10.0;
 | |
|   auto high = 20.0;
 | |
|   x = random::randint(low, high, {1000, 1000});
 | |
|   CHECK((all(low <= x).item<bool>() && all(x < high).item<bool>()));
 | |
| 
 | |
|   // Check high < low => all equals to low
 | |
|   low = 20.0;
 | |
|   high = -10.0;
 | |
|   x = random::randint(low, high, {3, 3});
 | |
|   CHECK(all(equal(x, array(low))).item<bool>());
 | |
| 
 | |
|   // Check wrong key type or shape
 | |
|   auto key = array({0, 0}, {1, 2});
 | |
|   CHECK_THROWS_AS(
 | |
|       random::randint(low, high, {}, float32, key), std::invalid_argument);
 | |
| }
 | |
| 
 | |
| TEST_CASE("test random bernoulli") {
 | |
|   auto x = random::bernoulli();
 | |
| 
 | |
|   CHECK_EQ(x.size(), 1);
 | |
|   CHECK_EQ(x.dtype(), bool_);
 | |
| 
 | |
|   // Bernoulli parameter can have floating point type
 | |
|   x = random::bernoulli(array(0.5, float16));
 | |
|   CHECK_EQ(x.size(), 1);
 | |
|   CHECK_EQ(x.dtype(), bool_);
 | |
| 
 | |
|   CHECK_THROWS(random::bernoulli(array(1, int32)));
 | |
| 
 | |
|   // Negative numbers allowed in Jax
 | |
|   x = random::bernoulli(array(-1.0));
 | |
|   CHECK_FALSE(x.item<bool>());
 | |
| 
 | |
|   x = random::bernoulli(array(5.0));
 | |
|   CHECK(x.item<bool>());
 | |
| 
 | |
|   // Return array with correct shape
 | |
|   x = random::bernoulli(0.5, {3, 3});
 | |
|   CHECK_EQ(x.shape(), std::vector<int>({3, 3}));
 | |
| 
 | |
|   // Try with p = {}
 | |
|   x = random::bernoulli(array({}));
 | |
|   CHECK_EQ(x.size(), 0);
 | |
| 
 | |
|   // Try broadcasting
 | |
|   auto p = array({0.1, 0.2, 0.3});
 | |
|   p = reshape(p, {1, 3});
 | |
|   x = random::bernoulli(p, {4, 3});
 | |
|   CHECK_EQ(x.shape(), std::vector<int>({4, 3}));
 | |
| 
 | |
|   CHECK_THROWS_AS(random::bernoulli(array({}), {3, 3}), std::invalid_argument);
 | |
| 
 | |
|   p = array({0.1, 0.2, 0.3});
 | |
|   // Ask for the wrong shape => throws
 | |
|   CHECK_THROWS_AS(random::bernoulli(p, {2}), std::invalid_argument);
 | |
| 
 | |
|   // Check wrong key type or shape
 | |
|   auto key = array({0, 0}, {1, 2});
 | |
|   CHECK_THROWS_AS(random::bernoulli(array(0.5), key), std::invalid_argument);
 | |
| }
 | |
| 
 | |
| TEST_CASE("Test truncated normal") {
 | |
|   auto x = random::truncated_normal(array(-2.0), array(2.0));
 | |
| 
 | |
|   CHECK_EQ(x.size(), 1);
 | |
|   CHECK_EQ(x.dtype(), float32);
 | |
| 
 | |
|   x = random::truncated_normal(array(-2.0), array(2.0), {}, float16);
 | |
|   CHECK_EQ(x.size(), 1);
 | |
|   CHECK_EQ(x.dtype(), float16);
 | |
| 
 | |
|   // Requested shape
 | |
|   x = random::truncated_normal(array(-2.0), array(2.0), {3, 4});
 | |
|   CHECK_EQ(x.shape(), std::vector<int>({3, 4}));
 | |
| 
 | |
|   // Empty array
 | |
|   x = random::truncated_normal(array({}), array({}));
 | |
|   CHECK_EQ(x.size(), 0);
 | |
| 
 | |
|   // Broadcast
 | |
|   auto lower = reshape(array({-2.0, -3.0}), {1, 2});
 | |
|   auto higher = reshape(array({0.0, 3.0, 1.5}), {3, 1});
 | |
|   x = random::truncated_normal(lower, higher);
 | |
| 
 | |
|   // All in bounds
 | |
|   CHECK_EQ(x.shape(), std::vector<int>({3, 2}));
 | |
|   CHECK((all(x <= higher).item<bool>() && all(lower <= x).item<bool>()));
 | |
| 
 | |
|   // high < low => all equal to low
 | |
|   x = random::truncated_normal(array(2.0), array(-2.0));
 | |
|   CHECK(all(x == array(2.0)).item<bool>());
 | |
| 
 | |
|   // Non broadcastable => throws
 | |
|   CHECK_THROWS_AS(
 | |
|       random::truncated_normal(lower, higher, {4, 2}), std::invalid_argument);
 | |
| 
 | |
|   auto key = array({0, 0}, {1, 2});
 | |
|   CHECK_THROWS_AS(
 | |
|       random::truncated_normal(array(-2.0), array(2.0), {1, 1}, float32, key),
 | |
|       std::invalid_argument);
 | |
| }
 | |
| 
 | |
| TEST_CASE("test categorical") {
 | |
|   auto logits = zeros({10, 20});
 | |
| 
 | |
|   using random::categorical;
 | |
| 
 | |
|   // Invalid axes
 | |
|   CHECK_THROWS(categorical(logits, 2));
 | |
|   CHECK_THROWS(categorical(logits, -3));
 | |
| 
 | |
|   // Invalid requested shapes
 | |
|   CHECK_THROWS(categorical(logits, 1, std::vector<int>{1}));
 | |
|   CHECK_THROWS(categorical(logits, 1, std::vector<int>{11}));
 | |
|   CHECK_THROWS(categorical(logits, 1, {10, 1}));
 | |
| 
 | |
|   CHECK_EQ(categorical(logits, -1).shape(), std::vector<int>{10});
 | |
|   CHECK_EQ(categorical(logits, 0).shape(), std::vector<int>{20});
 | |
|   CHECK_EQ(categorical(logits, 1).shape(), std::vector<int>{10});
 | |
| 
 | |
|   auto out = categorical(logits);
 | |
|   CHECK_EQ(out.shape(), std::vector<int>{10});
 | |
|   CHECK_EQ(out.dtype(), uint32);
 | |
|   CHECK(max(out).item<uint32_t>() < 20);
 | |
| 
 | |
|   out = categorical(logits, 0, {5, 20});
 | |
|   CHECK_EQ(out.shape(), std::vector<int>{5, 20});
 | |
|   CHECK(max(out).item<uint32_t>() < 10);
 | |
| 
 | |
|   float inf = std::numeric_limits<float>::infinity();
 | |
|   logits = array({1.0f, -2.0f, inf, 4.0f, 3.0f});
 | |
|   CHECK_EQ(categorical(logits).item<uint32_t>(), 2);
 | |
| 
 | |
|   logits = array({-inf, -2.0f, -inf, -inf});
 | |
|   CHECK_EQ(categorical(logits).item<uint32_t>(), 1);
 | |
| 
 | |
|   logits = zeros({5, 4, 3});
 | |
|   CHECK_EQ(categorical(logits, -1, 7).shape(), std::vector<int>{5, 4, 7});
 | |
|   CHECK_EQ(categorical(logits, -2, 7).shape(), std::vector<int>{5, 3, 7});
 | |
|   CHECK_EQ(categorical(logits, -3, 7).shape(), std::vector<int>{4, 3, 7});
 | |
| }
 | |
| 
 | |
| TEST_CASE("test laplace") {
 | |
|   // Test shapes, types, and sizes
 | |
|   {
 | |
|     auto x = random::laplace({});
 | |
|     CHECK_EQ(x.size(), 1);
 | |
|     CHECK_EQ(x.dtype(), float32);
 | |
| 
 | |
|     // Non float type throws
 | |
|     CHECK_THROWS_AS(random::laplace({}, int32), std::invalid_argument);
 | |
| 
 | |
|     // Check wrong key type or shape
 | |
|     auto key = array({0, 0});
 | |
|     CHECK_THROWS_AS(random::laplace({}, key), std::invalid_argument);
 | |
|     key = array({0, 0}, {1, 2});
 | |
|     CHECK_THROWS_AS(random::laplace({}, key), std::invalid_argument);
 | |
|     key = array({0u, 0u, 0u}, {3, 1});
 | |
|     CHECK_THROWS_AS(random::laplace({}, key), std::invalid_argument);
 | |
|     key = array({0u, 0u}, {2, 1});
 | |
|     CHECK_THROWS_AS(random::laplace({}, key), std::invalid_argument);
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     constexpr float inf = std::numeric_limits<float>::infinity();
 | |
|     auto key = random::key(128291);
 | |
|     auto out = random::laplace({1000000}, key);
 | |
|     float sample_mean = mean(out).item<float>();
 | |
|     float sample_variance = var(out).item<float>();
 | |
| 
 | |
|     CHECK(all(less(abs(out), array(inf))).item<bool>());
 | |
|     CHECK(abs(sample_mean) < 0.1);
 | |
| 
 | |
|     // Chebyshev's inequality.
 | |
|     for (int k = 1; k <= 5; ++k) {
 | |
|       float prob_above =
 | |
|           mean(greater_equal(out, array(k * std::sqrt(sample_variance))))
 | |
|               .item<float>();
 | |
|       float bound = 1 / std::pow(k, 2);
 | |
|       CHECK(prob_above < bound);
 | |
|     }
 | |
| 
 | |
|     // Expected variance for Laplace distribution is 2*scale^2.
 | |
|     float expected_variance = 2.0;
 | |
|     CHECK(std::abs(sample_variance - expected_variance) < 0.01);
 | |
| 
 | |
|     // Expected kurtosis of Laplace distribution is 3.
 | |
|     array fourth_pows = power(out - sample_mean, {4});
 | |
|     float sample_kurtosis =
 | |
|         mean(fourth_pows).item<float>() / std::pow(sample_variance, 2) - 3;
 | |
|     float expected_kurtosis = 3.0;
 | |
|     CHECK(std::abs(sample_kurtosis - expected_kurtosis) < 0.1);
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     constexpr float inf = std::numeric_limits<float>::infinity();
 | |
|     auto key = random::key(128291);
 | |
|     auto out = random::laplace({10000}, float16, key);
 | |
|     CHECK_EQ(out.dtype(), float16);
 | |
|     CHECK(all(less(abs(out), array(inf))).item<bool>());
 | |
|     CHECK(abs(float(mean(out).item<float16_t>())) < 0.1);
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     constexpr float inf = std::numeric_limits<float>::infinity();
 | |
|     auto key = random::key(128291);
 | |
|     auto out = random::laplace({10000}, bfloat16, key);
 | |
|     CHECK_EQ(out.dtype(), bfloat16);
 | |
|     CHECK(all(less(abs(out), array(inf))).item<bool>());
 | |
|     CHECK(abs(float(mean(out).item<bfloat16_t>())) < 0.1);
 | |
|   }
 | |
| }
 | 
