mlx/mlx/threadpool.h
2025-01-27 22:15:01 -08:00

134 lines
3.6 KiB
C++

// This code was modified from https://github.com/progschj/ThreadPool
// The original License is copied below:
//
// Copyright (c) 2012 Jakob Progsch, Václav Zeman
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source
// distribution.
#pragma once
#include <condition_variable>
#include <functional>
#include <future>
#include <memory>
#include <mutex>
#include <queue>
#include <stdexcept>
#include <thread>
#include <vector>
class ThreadPool {
public:
ThreadPool(size_t);
template <class F, class... Args>
auto enqueue(F&& f, Args&&... args)
-> std::future<typename std::invoke_result_t<F, Args...>>;
void resize(size_t);
~ThreadPool();
private:
void stop_and_wait();
void start_threads(size_t);
std::vector<std::thread> workers;
std::queue<std::function<void()>> tasks;
std::mutex queue_mutex;
std::condition_variable condition;
bool stop;
};
inline ThreadPool::ThreadPool(size_t threads) : stop(false) {
start_threads(threads);
}
template <class F, class... Args>
auto ThreadPool::enqueue(F&& f, Args&&... args)
-> std::future<typename std::invoke_result_t<F, Args...>> {
using return_type = typename std::invoke_result_t<F, Args...>;
auto task = std::make_shared<std::packaged_task<return_type()>>(
std::bind(std::forward<F>(f), std::forward<Args>(args)...));
std::future<return_type> res = task->get_future();
{
std::unique_lock<std::mutex> lock(queue_mutex);
if (stop) {
throw std::runtime_error(
"[ThreadPool::enqueue] Not allowed on stopped ThreadPool");
}
tasks.emplace([task]() { (*task)(); });
}
condition.notify_one();
return res;
}
inline void ThreadPool::resize(size_t threads) {
if (workers.size() == threads) {
return;
}
if (workers.size() > threads) {
stop_and_wait();
}
start_threads(threads - workers.size());
}
inline ThreadPool::~ThreadPool() {
stop_and_wait();
}
inline void ThreadPool::stop_and_wait() {
// Stop the current threads and wait until they finish
{
std::unique_lock<std::mutex> lock(queue_mutex);
stop = true;
}
condition.notify_all();
for (std::thread& worker : workers) {
worker.join();
}
// Reset the member variables so that the threadpool is reusable
stop = false;
workers.clear();
}
inline void ThreadPool::start_threads(size_t threads) {
for (size_t i = 0; i < threads; ++i) {
workers.emplace_back([this] {
for (;;) {
std::function<void()> task;
{
std::unique_lock<std::mutex> lock(this->queue_mutex);
this->condition.wait(
lock, [this] { return this->stop || !this->tasks.empty(); });
if (this->stop && this->tasks.empty())
return;
task = std::move(this->tasks.front());
this->tasks.pop();
}
task();
}
});
}
}