mlx/python/tests/test_vmap.py
2024-03-14 14:38:22 -07:00

320 lines
11 KiB
Python

# Copyright © 2023-2024 Apple Inc.
import unittest
import mlx.core as mx
import mlx_tests
class TestVmap(mlx_tests.MLXTestCase):
def test_basics(self):
# Can't vmap over scalars
with self.assertRaises(ValueError):
mx.vmap(mx.exp)(mx.array(1.0))
# Invalid input
with self.assertRaises(ValueError):
mx.vmap(mx.exp)("hello")
# Invalid axes
with self.assertRaises(ValueError):
mx.vmap(mx.exp, in_axes="hello")(mx.array([0, 1]))
with self.assertRaises(ValueError):
mx.vmap(mx.exp, in_axes=2)(mx.array([0, 1]))
with self.assertRaises(ValueError):
mx.vmap(mx.exp, out_axes="hello")(mx.array([0, 1]))
with self.assertRaises(ValueError):
mx.vmap(mx.exp, out_axes=2)(mx.array([0, 1]))
def test_unary(self):
ops = [
"abs",
"cos",
"erf",
"erfinv",
"exp",
"log",
"log1p",
"log2",
"log10",
"logical_not",
"negative",
"reciprocal",
"rsqrt",
"sigmoid",
"sign",
"sin",
"sqrt",
"square",
]
ops = ["erfinv"]
for opname in ops:
with self.subTest(op=opname):
op = getattr(mx, opname)
x = mx.arange(5)
y = mx.vmap(op)(x)
self.assertTrue(mx.array_equal(y, op(x), equal_nan=True))
x = mx.arange(8).reshape(2, 4)
y = mx.vmap(op)(x)
self.assertTrue(mx.array_equal(y, op(x), equal_nan=True))
y = mx.vmap(op, in_axes=1, out_axes=1)(x)
self.assertTrue(mx.array_equal(y, op(x), equal_nan=True))
def test_binary(self):
ops = [
"add",
"divide",
"equal",
"greater",
"greater_equal",
"less",
"less_equal",
"logaddexp",
"maximum",
"minimum",
"multiply",
"power",
"subtract",
"logical_or",
"logical_and",
]
for opname in ops:
with self.subTest(op=opname):
op = getattr(mx, opname)
x = mx.random.uniform(shape=(5,))
y = mx.random.uniform(shape=(5,))
out = mx.vmap(op)(x, y)
self.assertTrue(mx.array_equal(out, op(x, y)))
x = mx.random.uniform(shape=(2, 4))
y = mx.random.uniform(shape=(2, 4))
out = mx.vmap(op)(x, y)
self.assertTrue(mx.array_equal(out, op(x, y)))
out = mx.vmap(op, in_axes=(0, 0), out_axes=0)(x, y)
self.assertTrue(mx.array_equal(out, op(x, y)))
y = mx.random.uniform(shape=(4, 2))
out = mx.vmap(op, in_axes=(0, 1), out_axes=0)(x, y)
self.assertTrue(mx.array_equal(out, op(x, y.T)))
out = mx.vmap(op, in_axes=(0, 1), out_axes=1)(x, y)
self.assertTrue(mx.array_equal(out, op(x, y.T).T))
def test_tree(self):
def my_fun(tree):
return (tree["a"] + tree["b"][0]) * tree["b"][1]
tree = {
"a": mx.random.uniform(shape=(2, 4)),
"b": (
mx.random.uniform(shape=(2, 4)),
mx.random.uniform(shape=(2, 4)),
),
}
out = mx.vmap(my_fun)(tree)
expected = my_fun(tree)
self.assertTrue(mx.array_equal(out, my_fun(tree)))
with self.assertRaises(ValueError):
mx.vmap(my_fun, in_axes={"a": 0, "b": 0}, out_axes=0)(tree)
with self.assertRaises(ValueError):
mx.vmap(my_fun, in_axes={"a": 0, "b": ((0, 0), 0)}, out_axes=0)(tree)
out = mx.vmap(my_fun, in_axes=({"a": 0, "b": 0},), out_axes=0)(tree)
self.assertTrue(mx.array_equal(out, my_fun(tree)))
out = mx.vmap(my_fun, in_axes=({"a": 0, "b": (0, 0)},), out_axes=0)(tree)
self.assertTrue(mx.array_equal(out, my_fun(tree)))
tree = {
"a": mx.random.uniform(shape=(2, 4)),
"b": (
mx.random.uniform(shape=(4, 2)),
mx.random.uniform(shape=(4, 2)),
),
}
out = mx.vmap(my_fun, in_axes=({"a": 0, "b": (1, 1)},), out_axes=0)(tree)
expected = (tree["a"] + tree["b"][0].T) * tree["b"][1].T
self.assertTrue(mx.array_equal(out, expected))
def my_fun(x, y):
return {"a": x + y, "b": x * y}
x = mx.random.uniform(shape=(2, 4))
y = mx.random.uniform(shape=(2, 4))
out = mx.vmap(my_fun, in_axes=0, out_axes=0)(x, y)
expected = my_fun(x, y)
self.assertTrue(mx.array_equal(out["a"], expected["a"]))
self.assertTrue(mx.array_equal(out["b"], expected["b"]))
with self.assertRaises(ValueError):
mx.vmap(my_fun, in_axes=0, out_axes=(0, 1))(x, y)
with self.assertRaises(ValueError):
mx.vmap(my_fun, in_axes=0, out_axes={"a": 0, "c": 1})(x, y)
out = mx.vmap(my_fun, in_axes=0, out_axes={"a": 1, "b": 0})(x, y)
expected = my_fun(x, y)
self.assertTrue(mx.array_equal(out["a"].T, expected["a"]))
self.assertTrue(mx.array_equal(out["b"], expected["b"]))
def test_vmap_indexing(self):
x = mx.arange(16).reshape(2, 2, 2, 2)
inds = mx.array([[0, 1, 0], [1, 1, 0]])
out = mx.vmap(lambda x, y: x[y], in_axes=(0, 0))(x, inds)
expected = mx.array(
[
[[[0, 1], [2, 3]], [[4, 5], [6, 7]], [[0, 1], [2, 3]]],
[[[12, 13], [14, 15]], [[12, 13], [14, 15]], [[8, 9], [10, 11]]],
]
)
self.assertTrue(mx.array_equal(out, expected))
out = mx.vmap(lambda x, y: x[y], in_axes=(0, None))(x, inds)
expected = mx.array(
[
[
[[[0, 1], [2, 3]], [[4, 5], [6, 7]], [[0, 1], [2, 3]]],
[[[4, 5], [6, 7]], [[4, 5], [6, 7]], [[0, 1], [2, 3]]],
],
[
[[[8, 9], [10, 11]], [[12, 13], [14, 15]], [[8, 9], [10, 11]]],
[[[12, 13], [14, 15]], [[12, 13], [14, 15]], [[8, 9], [10, 11]]],
],
]
)
self.assertTrue(mx.array_equal(out, expected))
out = mx.vmap(lambda x, y: x[y], in_axes=(None, 0))(x, inds)
expected = mx.array(
[
[
[[[0, 1], [2, 3]], [[4, 5], [6, 7]]],
[[[8, 9], [10, 11]], [[12, 13], [14, 15]]],
[[[0, 1], [2, 3]], [[4, 5], [6, 7]]],
],
[
[[[8, 9], [10, 11]], [[12, 13], [14, 15]]],
[[[8, 9], [10, 11]], [[12, 13], [14, 15]]],
[[[0, 1], [2, 3]], [[4, 5], [6, 7]]],
],
]
)
self.assertTrue(mx.array_equal(out, expected))
inds2 = mx.array([[0, 1, 0], [0, 1, 0]])
out = mx.vmap(lambda x, y, z: x[y, z], in_axes=(None, 0, 0))(x, inds, inds2)
expected = mx.array(
[
[[[0, 1], [2, 3]], [[12, 13], [14, 15]], [[0, 1], [2, 3]]],
[[[8, 9], [10, 11]], [[12, 13], [14, 15]], [[0, 1], [2, 3]]],
]
)
self.assertTrue(mx.array_equal(out, expected))
def test_vmap_reduce(self):
a = mx.ones((5, 5), mx.int32)
out = mx.vmap(lambda x: x.sum())(a)
self.assertTrue(mx.array_equal(out, mx.full((5,), 5)))
out = mx.vmap(lambda x: x.sum(keepdims=True))(a)
self.assertTrue(mx.array_equal(out, mx.full((5, 1), 5)))
out = mx.vmap(lambda x: x.sum(axis=0))(a)
self.assertTrue(mx.array_equal(out, mx.full((5,), 5)))
a = mx.ones((5, 3, 2), mx.int32)
out = mx.vmap(lambda x: x.sum(axis=(0, 1)))(a)
self.assertTrue(mx.array_equal(out, mx.full((5,), 6)))
a = mx.ones((5, 3, 2), mx.int32)
out = mx.vmap(lambda x: x.sum(axis=(0, 1)), in_axes=(1,))(a)
self.assertTrue(mx.array_equal(out, mx.full((3,), 10)))
a = mx.ones((5, 3, 2), mx.int32)
out = mx.vmap(lambda x: x.sum(axis=(0, 1)), in_axes=(2,))(a)
self.assertTrue(mx.array_equal(out, mx.full((2,), 15)))
def test_vmap_argreduce(self):
a = mx.array([[1, 2, 3], [2, 3, 1]])
out = mx.vmap(lambda x: mx.argmin(x))(a)
expected = mx.array([0, 2])
self.assertTrue(mx.array_equal(out, expected))
out = mx.vmap(lambda x: mx.argmax(x))(a)
expected = mx.array([2, 1])
self.assertTrue(mx.array_equal(out, expected))
def test_vmap_mean(self):
a = mx.arange(8).reshape(2, 4)
out = mx.vmap(mx.mean)(a)
expected = mx.mean(a, axis=1)
self.assertTrue(mx.allclose(out, expected))
a = mx.arange(16).reshape(2, 2, 4)
out = mx.vmap(mx.vmap(mx.mean))(a)
expected = mx.mean(a, axis=2)
self.assertTrue(mx.allclose(out, expected))
def test_mismatch_input_sizes(self):
a = mx.ones((10, 1))
b = mx.ones((1, 1, 1, 5))
with self.assertRaises(ValueError):
out = mx.vmap(lambda x, y: x + y)(a, b)
b = mx.ones((10, 5))
with self.assertRaises(ValueError):
out = mx.vmap(lambda x, y: x + y, in_axes=(0, 1))(a, b)
def test_vmap_matmul(self):
a = mx.random.uniform(shape=(2, 3, 4))
b = mx.random.uniform(shape=(4, 3))
# matmul
out = mx.vmap(mx.matmul, in_axes=(0, None))(a, b)
self.assertTrue(mx.allclose(out, a @ b))
# addmm
c = mx.random.uniform(shape=(3,))
out = mx.vmap(mx.addmm, in_axes=(None, 0, None))(c, a, b)
self.assertTrue(mx.allclose(out, mx.addmm(c, a, b)))
b = mx.random.uniform(shape=(4, 2))
# matmul
out = mx.vmap(mx.matmul, in_axes=(1, None), out_axes=(1,))(a, b)
expected = mx.moveaxis(mx.moveaxis(a, 1, 0) @ b, 0, 1)
self.assertTrue(mx.allclose(out, expected))
# addmm
c = mx.random.uniform(shape=(2,))
out = mx.vmap(mx.addmm, in_axes=(None, 1, None))(c, a, b)
self.assertTrue(mx.allclose(out, mx.addmm(c, mx.moveaxis(a, 1, 0), b)))
a = mx.random.uniform(shape=(2, 3, 4))
b = mx.random.uniform(shape=(4, 2, 3))
# matmul
out = mx.vmap(mx.matmul, in_axes=(0, 1))(a, b)
expected = a @ mx.moveaxis(b, 1, 0)
self.assertTrue(mx.allclose(out, expected))
# addmm
c = mx.random.uniform(shape=(3, 3, 2))
out = mx.vmap(mx.addmm, in_axes=(2, 0, 1))(c, a, b)
expected = mx.addmm(mx.moveaxis(c, 2, 0), a, mx.moveaxis(b, 1, 0))
self.assertTrue(mx.allclose(out, expected))
if __name__ == "__main__":
unittest.main()