mlx/python/mlx/nn/layers/pooling.py
Awni Hannun 1e16331d9c
post nanobind docs fixes and some updates (#889)
* post nanobind docs fixes and some updates

* one more doc nit

* fix for stubs and latex
2024-03-24 15:03:27 -07:00

331 lines
12 KiB
Python

# Copyright © 2023-2024 Apple Inc.
import operator
from itertools import accumulate
from typing import Optional, Tuple, Union
import mlx.core as mx
from mlx.nn.layers.base import Module
def _value_or_list(x, n, msg):
if isinstance(x, (list, tuple)):
if len(x) != n:
raise ValueError(msg)
return list(x)
if not isinstance(x, int):
raise ValueError(msg)
return [x] * n
def _non_overlapping_sliding_windows(x, shape, window_shape):
# Compute the intermediate shape
new_shape = [shape[0]]
for s, w in zip(shape[1:], window_shape):
new_shape.append(s // w)
new_shape.append(w)
new_shape.append(shape[-1])
last_axis = len(new_shape) - 1
axis_order = [0, *range(1, last_axis, 2), *range(2, last_axis, 2), last_axis]
x = x.reshape(new_shape)
x = x.transpose(axis_order)
return x
def _sliding_windows(x, window_shape, window_strides):
if x.ndim < 3:
raise ValueError(
f"To extract sliding windows at least 1 spatial dimension "
f"(3 total) is needed but the input only has {x.ndim} dimensions."
)
spatial_dims = x.shape[1:-1]
if not (len(spatial_dims) == len(window_shape) == len(window_strides)):
raise ValueError(
f"To extract sliding windows the window shapes and strides must have "
f"the same number of spatial dimensions as the signal but the signal "
f"has {len(spatial_dims)} dims and the window shape has {len(window_shape)} "
f"and strides have {len(window_strides)}."
)
shape = x.shape
if all(
window == stride and size % window == 0
for size, window, stride in zip(spatial_dims, window_shape, window_strides)
):
return _non_overlapping_sliding_windows(x, shape, window_shape)
strides = list(reversed(list(accumulate(reversed(shape + (1,)), operator.mul))))[1:]
# Compute the output shape
final_shape = [shape[0]]
final_shape += [
(size - window) // stride + 1
for size, window, stride in zip(spatial_dims, window_shape, window_strides)
]
final_shape += window_shape
final_shape += [shape[-1]]
# Compute the output strides
final_strides = strides[:1]
final_strides += [
og_stride * stride for og_stride, stride in zip(strides[1:-1], window_strides)
]
final_strides += strides[1:-1]
final_strides += strides[-1:] # should always be [1]
return mx.as_strided(x, final_shape, final_strides)
class _Pool(Module):
def __init__(self, pooling_function, kernel_size, stride, padding, padding_value):
super().__init__()
self._pooling_function = pooling_function
self._kernel_size = kernel_size
self._stride = stride
self._padding = padding
self._padding_value = padding_value
self._axes = tuple(range(-len(self._kernel_size) - 1, -1, 1))
def _extra_repr(self):
ks = tuple(self._kernel_size)
st = tuple(self._stride)
pd = tuple(p[0] for p in self._padding)
return f"kernel_size={ks}, stride={st}, padding={pd}"
def __call__(self, x):
if any(p[0] > 0 for p in self._padding):
x = mx.pad(x, [(0, 0)] + self._padding + [(0, 0)], self._padding_value)
x = _sliding_windows(x, self._kernel_size, self._stride)
return self._pooling_function(x, self._axes)
class _Pool1d(_Pool):
def __init__(
self,
pooling_function,
padding_value,
kernel_size: Union[int, Tuple[int]],
stride: Optional[Union[int, Tuple[int]]] = None,
padding: Union[int, Tuple[int]] = 0,
):
class_name = type(self).__name__
msg = "[{}] '{}' must be an integer or a tuple containing 1 integer"
kernel_size = _value_or_list(
kernel_size, 1, msg.format(class_name, "kernel_size")
)
if stride is not None:
stride = _value_or_list(stride, 1, msg.format(class_name, "stride"))
else:
stride = kernel_size
padding = _value_or_list(padding, 1, msg.format(class_name, "padding"))
padding = [(p, p) for p in padding]
super().__init__(pooling_function, kernel_size, stride, padding, padding_value)
class _Pool2d(_Pool):
def __init__(
self,
pooling_function,
padding_value,
kernel_size: Union[int, Tuple[int, int]],
stride: Optional[Union[int, Tuple[int, int]]] = None,
padding: Optional[Union[int, Tuple[int, int]]] = 0,
):
class_name = type(self).__name__
msg = "[{}] '{}' must be an integer or a tuple containing 2 integers"
kernel_size = _value_or_list(
kernel_size, 2, msg.format(class_name, "kernel_size")
)
if stride is not None:
stride = _value_or_list(stride, 2, msg.format(class_name, "stride"))
else:
stride = kernel_size
padding = _value_or_list(padding, 2, msg.format(class_name, "padding"))
padding = [(p, p) for p in padding]
super().__init__(pooling_function, kernel_size, stride, padding, padding_value)
class MaxPool1d(_Pool1d):
r"""Applies 1-dimensional max pooling.
Assuming an input of shape :math:`(N, L, C)` and ``kernel_size`` is
:math:`k`, the output is a tensor of shape :math:`(N, L_{out}, C)`, given
by:
.. math::
\text{out}(N_i, t, C_j) = \max_{m=0, \ldots, k - 1}
\text{input}(N_i, \text{stride} \times t + m, C_j),
where :math:`L_{out} = \left\lfloor \frac{L + 2 \times \text{padding} -
\text{kernel\_size}}{\text{stride}}\right\rfloor + 1`.
Args:
kernel_size (int or tuple(int)): The size of the pooling window kernel.
stride (int or tuple(int), optional): The stride of the pooling window.
Default: ``kernel_size``.
padding (int or tuple(int), optional): How much negative infinity
padding to apply to the input. The padding amount is applied to
both sides of the spatial axis. Default: ``0``.
Examples:
>>> import mlx.core as mx
>>> import mlx.nn.layers as nn
>>> x = mx.random.normal(shape=(4, 16, 5))
>>> pool = nn.MaxPool1d(kernel_size=2, stride=2)
>>> pool(x)
"""
def __init__(
self,
kernel_size: Union[int, Tuple[int, int]],
stride: Optional[Union[int, Tuple[int, int]]] = None,
padding: Optional[Union[int, Tuple[int, int]]] = 0,
):
super().__init__(mx.max, -float("inf"), kernel_size, stride, padding)
class AvgPool1d(_Pool1d):
r"""Applies 1-dimensional average pooling.
Assuming an input of shape :math:`(N, L, C)` and ``kernel_size`` is
:math:`k`, the output is a tensor of shape :math:`(N, L_{out}, C)`, given
by:
.. math::
\text{out}(N_i, t, C_j) = \frac{1}{k} \sum_{m=0, \ldots, k - 1}
\text{input}(N_i, \text{stride} \times t + m, C_j),
where :math:`L_{out} = \left\lfloor \frac{L + 2 \times \text{padding} -
\text{kernel\_size}}{\text{stride}}\right\rfloor + 1`.
Args:
kernel_size (int or tuple(int)): The size of the pooling window kernel.
stride (int or tuple(int), optional): The stride of the pooling window.
Default: ``kernel_size``.
padding (int or tuple(int), optional): How much zero padding to apply to
the input. The padding amount is applied to both sides of the spatial
axis. Default: ``0``.
Examples:
>>> import mlx.core as mx
>>> import mlx.nn.layers as nn
>>> x = mx.random.normal(shape=(4, 16, 5))
>>> pool = nn.AvgPool1d(kernel_size=2, stride=2)
>>> pool(x)
"""
def __init__(
self,
kernel_size: Union[int, Tuple[int, int]],
stride: Optional[Union[int, Tuple[int, int]]] = None,
padding: Optional[Union[int, Tuple[int, int]]] = 0,
):
super().__init__(mx.mean, 0, kernel_size, stride, padding)
class MaxPool2d(_Pool2d):
r"""Applies 2-dimensional max pooling.
Assuming an input of shape :math:`(N, H, W, C)` and ``kernel_size`` is
:math:`(k_H, k_W)`, the output is a tensor of shape :math:`(N, H_{out},
W_{out}, C)`, given by:
.. math::
\begin{aligned}
\text{out}(N_i, h, w, C_j) = & \max_{m=0, \ldots, k_H-1} \max_{n=0, \ldots, k_W-1} \\
& \text{input}(N_i, \text{stride[0]} \times h + m,
\text{stride[1]} \times w + n, C_j),
\end{aligned}
where :math:`H_{out} = \left\lfloor\frac{H + 2 * \text{padding[0]} - \text{kernel\_size[0]}}{\text{stride[0]}}\right\rfloor + 1`,
:math:`W_{out} = \left\lfloor\frac{W + 2 * \text{padding[1]} - \text{kernel\_size[1]}}{\text{stride[1]}}\right\rfloor + 1`.
The parameters ``kernel_size``, ``stride``, ``padding``, can either be:
- a single ``int`` -- in which case the same value is used for both the
height and width axis;
- a ``tuple`` of two ``int`` s -- in which case, the first ``int`` is
used for the height axis, the second ``int`` for the width axis.
Args:
kernel_size (int or tuple(int, int)): The size of the pooling window.
stride (int or tuple(int, int), optional): The stride of the pooling
window. Default: ``kernel_size``.
padding (int or tuple(int, int), optional): How much negative infinity
padding to apply to the input. The padding is applied on both sides
of the height and width axis. Default: ``0``.
Examples:
>>> import mlx.core as mx
>>> import mlx.nn.layers as nn
>>> x = mx.random.normal(shape=(8, 32, 32, 4))
>>> pool = nn.MaxPool2d(kernel_size=2, stride=2)
>>> pool(x)
"""
def __init__(
self,
kernel_size: Union[int, Tuple[int, int]],
stride: Optional[Union[int, Tuple[int, int]]] = None,
padding: Optional[Union[int, Tuple[int, int]]] = 0,
):
super().__init__(mx.max, -float("inf"), kernel_size, stride, padding)
class AvgPool2d(_Pool2d):
r"""Applies 2-dimensional average pooling.
Assuming an input of shape :math:`(N, H, W, C)` and ``kernel_size`` is
:math:`(k_H, k_W)`, the output is a tensor of shape :math:`(N, H_{out},
W_{out}, C)`, given by:
.. math::
\begin{aligned}
\text{out}(N_i, h, w, C_j) = & \frac{1}{k_H k_W} \sum_{m=0, \ldots, k_H-1} \sum_{n=0, \ldots, k_W-1} \\
& \text{input}(N_i, \text{stride[0]} \times h + m,
\text{stride[1]} \times w + n, C_j),
\end{aligned}
where :math:`H_{out} = \left\lfloor\frac{H + 2 * \text{padding[0]} - \text{kernel\_size[0]}}{\text{stride[0]}}\right\rfloor + 1`,
:math:`W_{out} = \left\lfloor\frac{W + 2 * \text{padding[1]} - \text{kernel\_size[1]}}{\text{stride[1]}}\right\rfloor + 1`.
The parameters ``kernel_size``, ``stride``, ``padding``, can either be:
- a single ``int`` -- in which case the same value is used for both the
height and width axis;
- a ``tuple`` of two ``int`` s -- in which case, the first ``int`` is
used for the height axis, the second ``int`` for the width axis.
Args:
kernel_size (int or tuple(int, int)): The size of the pooling window.
stride (int or tuple(int, int), optional): The stride of the pooling
window. Default: ``kernel_size``.
padding (int or tuple(int, int), optional): How much zero
padding to apply to the input. The padding is applied on both sides
of the height and width axis. Default: ``0``.
Examples:
>>> import mlx.core as mx
>>> import mlx.nn.layers as nn
>>> x = mx.random.normal(shape=(8, 32, 32, 4))
>>> pool = nn.MaxPool2d(kernel_size=2, stride=2)
>>> pool(x)
"""
def __init__(
self,
kernel_size: Union[int, Tuple[int, int]],
stride: Optional[Union[int, Tuple[int, int]]] = None,
padding: Optional[Union[int, Tuple[int, int]]] = 0,
):
super().__init__(mx.mean, 0, kernel_size, stride, padding)