mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-28 12:13:21 +08:00
194 lines
4.8 KiB
C++
194 lines
4.8 KiB
C++
// Copyright © 2023 Apple Inc.
|
|
|
|
#pragma once
|
|
|
|
#include <optional>
|
|
|
|
#include "mlx/array.h"
|
|
#include "mlx/stream.h"
|
|
|
|
namespace mlx::core::random {
|
|
|
|
class KeySequence {
|
|
public:
|
|
explicit KeySequence(uint64_t seed);
|
|
|
|
void seed(uint64_t seed);
|
|
array next();
|
|
|
|
// static defualt
|
|
static KeySequence& default_() {
|
|
static KeySequence ks(0);
|
|
return ks;
|
|
}
|
|
|
|
private:
|
|
array key_;
|
|
};
|
|
|
|
/** Get a PRNG key from a seed. */
|
|
array key(uint64_t seed);
|
|
|
|
/** Seed the default PRNG key. */
|
|
void seed(uint64_t seed);
|
|
|
|
/** Generate an array with type uint32 filled with random bits. */
|
|
array bits(
|
|
const std::vector<int>& shape,
|
|
int width,
|
|
const std::optional<array>& key = std::nullopt,
|
|
StreamOrDevice s = {});
|
|
inline array bits(
|
|
const std::vector<int>& shape,
|
|
const std::optional<array>& key = std::nullopt,
|
|
StreamOrDevice s = {}) {
|
|
return bits(shape, 4, key, s);
|
|
}
|
|
|
|
/** Split the rng key into a pair of keys. */
|
|
std::pair<array, array> split(const array& key, StreamOrDevice s = {});
|
|
|
|
/** Split the rng key into `num` keys. */
|
|
array split(const array& key, int num, StreamOrDevice s = {});
|
|
|
|
/** Generate uniform random numbers between low and high. */
|
|
array uniform(
|
|
const array& low,
|
|
const array& high,
|
|
const std::vector<int>& shape,
|
|
Dtype dtype = float32,
|
|
const std::optional<array>& key = std::nullopt,
|
|
StreamOrDevice s = {});
|
|
|
|
template <typename T, typename U>
|
|
array uniform(
|
|
T low,
|
|
U high,
|
|
const std::vector<int>& shape,
|
|
Dtype dtype = float32,
|
|
const std::optional<array>& key = std::nullopt,
|
|
StreamOrDevice s = {}) {
|
|
return uniform(array(low), array(high), shape, dtype, key, to_stream(s));
|
|
}
|
|
|
|
/** Generate uniform random numbers between 0 and 1. */
|
|
array uniform(
|
|
const std::vector<int>& shape,
|
|
Dtype dtype,
|
|
const std::optional<array>& key = std::nullopt,
|
|
StreamOrDevice s = {});
|
|
inline array uniform(
|
|
const std::vector<int>& shape,
|
|
const std::optional<array>& key = std::nullopt,
|
|
StreamOrDevice s = {}) {
|
|
return uniform(shape, float32, key);
|
|
}
|
|
|
|
/** Generate samples from the standard normal distribution. */
|
|
array normal(
|
|
const std::vector<int>& shape,
|
|
Dtype dtype,
|
|
const std::optional<array>& key = std::nullopt,
|
|
StreamOrDevice s = {});
|
|
inline array normal(
|
|
const std::vector<int>& shape,
|
|
const std::optional<array>& key = std::nullopt,
|
|
StreamOrDevice s = {}) {
|
|
return normal(shape, float32, key, s);
|
|
}
|
|
|
|
/** Generate integer samples uniformly at random */
|
|
array randint(
|
|
const array& low,
|
|
const array& high,
|
|
const std::vector<int>& shape,
|
|
Dtype dtype = int32,
|
|
const std::optional<array>& key = std::nullopt,
|
|
StreamOrDevice s = {});
|
|
|
|
template <typename T, typename U>
|
|
array randint(
|
|
T low,
|
|
U high,
|
|
const std::vector<int>& shape,
|
|
Dtype dtype = int32,
|
|
const std::optional<array>& key = std::nullopt,
|
|
StreamOrDevice s = {}) {
|
|
return randint(array(low), array(high), shape, dtype, key, to_stream(s));
|
|
};
|
|
|
|
/** Generate binary variables with probability to be true equal to p */
|
|
array bernoulli(
|
|
const array& p,
|
|
const std::vector<int>& shape,
|
|
const std::optional<array>& key = std::nullopt,
|
|
StreamOrDevice s = {});
|
|
array bernoulli(
|
|
const array& p,
|
|
const std::optional<array>& key = std::nullopt,
|
|
StreamOrDevice s = {});
|
|
|
|
template <typename T>
|
|
array bernoulli(
|
|
T p,
|
|
const std::optional<array>& key = std::nullopt,
|
|
StreamOrDevice s = {}) {
|
|
return bernoulli(array(p), key, s);
|
|
};
|
|
|
|
template <typename T>
|
|
array bernoulli(
|
|
T p,
|
|
const std::vector<int>& shape,
|
|
const std::optional<array>& key = std::nullopt,
|
|
StreamOrDevice s = {}) {
|
|
return bernoulli(array(p), shape, key, s);
|
|
};
|
|
|
|
array bernoulli(
|
|
const std::optional<array>& key = std::nullopt,
|
|
StreamOrDevice s = {});
|
|
|
|
array truncated_normal(
|
|
const array& lower,
|
|
const array& upper,
|
|
const std::vector<int>& shape,
|
|
Dtype dtype = float32,
|
|
const std::optional<array>& key = std::nullopt,
|
|
StreamOrDevice s = {});
|
|
|
|
array truncated_normal(
|
|
const array& lower,
|
|
const array& upper,
|
|
Dtype dtype = float32,
|
|
const std::optional<array>& key = std::nullopt,
|
|
StreamOrDevice s = {});
|
|
|
|
array gumbel(
|
|
const std::vector<int>& shape,
|
|
Dtype dtype = float32,
|
|
const std::optional<array>& key = std::nullopt,
|
|
StreamOrDevice s = {});
|
|
|
|
array categorical(
|
|
const array& logits,
|
|
int axis,
|
|
const std::vector<int>& shape,
|
|
const std::optional<array>& key = std::nullopt,
|
|
StreamOrDevice s = {});
|
|
|
|
array categorical(
|
|
const array& logits_,
|
|
int axis,
|
|
int num_samples,
|
|
const std::optional<array>& key = std::nullopt,
|
|
StreamOrDevice s = {});
|
|
|
|
array categorical(
|
|
const array& logits,
|
|
int axis = -1,
|
|
const std::optional<array>& key = std::nullopt,
|
|
StreamOrDevice s = {});
|
|
|
|
} // namespace mlx::core::random
|