mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 17:31:16 +08:00
523 lines
15 KiB
C++
523 lines
15 KiB
C++
// Copyright © 2023 Apple Inc.
|
|
|
|
#include <numeric>
|
|
#include <ostream>
|
|
#include <vector>
|
|
|
|
#include "mlx/linalg.h"
|
|
#include "mlx/primitives.h"
|
|
#include "mlx/utils.h"
|
|
|
|
namespace mlx::core::linalg {
|
|
|
|
void check_cpu_stream(const StreamOrDevice& s, const std::string& prefix) {
|
|
if (to_stream(s).device == Device::gpu) {
|
|
throw std::invalid_argument(
|
|
prefix +
|
|
" This op is not yet supported on the GPU. "
|
|
"Explicitly pass a CPU stream to run it.");
|
|
}
|
|
}
|
|
|
|
Dtype at_least_float(const Dtype& d) {
|
|
return issubdtype(d, inexact) ? d : promote_types(d, float32);
|
|
}
|
|
|
|
inline array l2_norm(
|
|
const array& a,
|
|
const std::vector<int>& axis,
|
|
bool keepdims,
|
|
StreamOrDevice s) {
|
|
if (issubdtype(a.dtype(), complexfloating)) {
|
|
return sqrt(sum(abs(a, s) * abs(a, s), axis, keepdims, s), s);
|
|
} else {
|
|
return sqrt(sum(square(a, s), axis, keepdims, s), s);
|
|
}
|
|
}
|
|
|
|
inline array vector_norm(
|
|
const array& a,
|
|
const double ord,
|
|
const std::vector<int>& axis,
|
|
bool keepdims,
|
|
StreamOrDevice s) {
|
|
auto dtype = at_least_float(a.dtype());
|
|
if (ord == 0.0) {
|
|
return astype(sum(not_equal(a, array(0), s), axis, keepdims, s), dtype, s);
|
|
} else if (ord == 1.0) {
|
|
return astype(sum(abs(a, s), axis, keepdims, s), dtype, s);
|
|
} else if (ord == 2.0) {
|
|
return l2_norm(a, axis, keepdims, s);
|
|
} else if (ord == std::numeric_limits<double>::infinity()) {
|
|
return astype(max(abs(a, s), axis, keepdims, s), dtype, s);
|
|
} else if (ord == -std::numeric_limits<double>::infinity()) {
|
|
return astype(min(abs(a, s), axis, keepdims, s), dtype, s);
|
|
} else {
|
|
return power(
|
|
sum(power(abs(a, s), array(ord, dtype), s), axis, keepdims, s),
|
|
array(1.0 / ord, dtype),
|
|
s);
|
|
}
|
|
}
|
|
|
|
inline array matrix_norm(
|
|
const array& a,
|
|
const double ord,
|
|
const std::vector<int>& axis,
|
|
bool keepdims,
|
|
StreamOrDevice s) {
|
|
auto dtype = at_least_float(a.dtype());
|
|
auto row_axis = axis[0];
|
|
auto col_axis = axis[1];
|
|
if (ord == -1.0) {
|
|
col_axis -= (!keepdims && col_axis > row_axis && col_axis > 0);
|
|
return astype(
|
|
min(sum(abs(a, s), row_axis, keepdims, s), col_axis, keepdims, s),
|
|
dtype,
|
|
s);
|
|
} else if (ord == 1.0) {
|
|
col_axis -= (!keepdims && col_axis > row_axis && col_axis > 0);
|
|
return astype(
|
|
max(sum(abs(a, s), row_axis, keepdims, s), col_axis, keepdims, s),
|
|
dtype,
|
|
s);
|
|
} else if (ord == std::numeric_limits<double>::infinity()) {
|
|
row_axis -= (!keepdims && row_axis > col_axis && row_axis > 0);
|
|
return astype(
|
|
max(sum(abs(a, s), col_axis, keepdims, s), row_axis, keepdims, s),
|
|
dtype,
|
|
s);
|
|
} else if (ord == -std::numeric_limits<double>::infinity()) {
|
|
row_axis -= (!keepdims && row_axis > col_axis && row_axis > 0);
|
|
return astype(
|
|
min(sum(abs(a, s), col_axis, keepdims, s), row_axis, keepdims, s),
|
|
dtype,
|
|
s);
|
|
} else if (ord == 2.0 || ord == -2.0) {
|
|
throw std::runtime_error(
|
|
"[linalg::norm] Singular value norms are not implemented.");
|
|
} else {
|
|
std::ostringstream msg;
|
|
msg << "[linalg::norm] Invalid ord " << ord << " for matrix norm.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
}
|
|
|
|
inline array matrix_norm(
|
|
const array& a,
|
|
const std::string& ord,
|
|
const std::vector<int>& axis,
|
|
bool keepdims,
|
|
StreamOrDevice s) {
|
|
if (ord == "f" || ord == "fro") {
|
|
return l2_norm(a, axis, keepdims, s);
|
|
} else if (ord == "nuc") {
|
|
throw std::runtime_error(
|
|
"[linalg::norm] Nuclear norm not yet implemented.");
|
|
} else {
|
|
std::ostringstream msg;
|
|
msg << "[linalg::norm] Invalid ord value '" << ord << "' for matrix norm.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
}
|
|
|
|
array norm(
|
|
const array& a,
|
|
const std::optional<std::vector<int>>& axis /* = std::nullopt */,
|
|
bool keepdims /* = false */,
|
|
StreamOrDevice s /* = {} */) {
|
|
if (!axis) {
|
|
return norm(flatten(a, s), std::vector<int>{0}, keepdims, s);
|
|
}
|
|
|
|
if (axis.value().size() > 2) {
|
|
throw std::invalid_argument(
|
|
"[linalg::norm] Received too many axes for norm.");
|
|
}
|
|
return l2_norm(a, axis.value(), keepdims, s);
|
|
}
|
|
|
|
array norm(
|
|
const array& a,
|
|
const double ord,
|
|
const std::optional<std::vector<int>>& axis /* = std::nullopt */,
|
|
bool keepdims /* = false */,
|
|
StreamOrDevice s /* = {} */) {
|
|
std::vector<int> ax;
|
|
if (!axis) {
|
|
ax.resize(a.ndim());
|
|
std::iota(ax.begin(), ax.end(), 0);
|
|
} else {
|
|
ax = axis.value();
|
|
}
|
|
if (ax.size() == 1) {
|
|
return vector_norm(a, ord, ax, keepdims, s);
|
|
} else if (ax.size() == 2) {
|
|
return matrix_norm(a, ord, ax, keepdims, s);
|
|
} else {
|
|
throw std::invalid_argument(
|
|
"[linalg::norm] Received too many axes for norm.");
|
|
}
|
|
}
|
|
|
|
array norm(
|
|
const array& a,
|
|
const std::string& ord,
|
|
const std::optional<std::vector<int>>& axis /* = std::nullopt */,
|
|
bool keepdims /* = false */,
|
|
StreamOrDevice s /* = {} */) {
|
|
std::vector<int> ax;
|
|
if (!axis) {
|
|
ax.resize(a.ndim());
|
|
std::iota(ax.begin(), ax.end(), 0);
|
|
} else {
|
|
ax = axis.value();
|
|
}
|
|
if (ax.size() != 2) {
|
|
std::ostringstream msg;
|
|
msg << "[linalg::norm] Norm '" << ord << "' only supported for matrices,"
|
|
<< " but received " << ax.size() << " axis/axes.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
return matrix_norm(a, ord, ax, keepdims, s);
|
|
}
|
|
|
|
std::pair<array, array> qr(const array& a, StreamOrDevice s /* = {} */) {
|
|
check_cpu_stream(s, "[linalg::qr]");
|
|
if (a.dtype() != float32) {
|
|
std::ostringstream msg;
|
|
msg << "[linalg::qr] Arrays must type float32. Received array "
|
|
<< "with type " << a.dtype() << ".";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
if (a.ndim() < 2) {
|
|
std::ostringstream msg;
|
|
msg << "[linalg::qr] Arrays must have >= 2 dimensions. Received array "
|
|
"with "
|
|
<< a.ndim() << " dimensions.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
int k = std::min(a.shape(-2), a.shape(-1));
|
|
auto q_shape = a.shape();
|
|
q_shape.back() = k;
|
|
auto r_shape = a.shape();
|
|
r_shape[r_shape.size() - 2] = k;
|
|
auto out = array::make_arrays(
|
|
{std::move(q_shape), std::move(r_shape)},
|
|
{a.dtype(), a.dtype()},
|
|
std::make_shared<QRF>(to_stream(s)),
|
|
{astype(a, a.dtype(), s)});
|
|
return std::make_pair(out[0], out[1]);
|
|
}
|
|
|
|
std::vector<array> svd(const array& a, StreamOrDevice s /* = {} */) {
|
|
check_cpu_stream(s, "[linalg::svd]");
|
|
if (a.dtype() != float32) {
|
|
std::ostringstream msg;
|
|
msg << "[linalg::svd] Input array must have type float32. Received array "
|
|
<< "with type " << a.dtype() << ".";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
if (a.ndim() < 2) {
|
|
std::ostringstream msg;
|
|
msg << "[linalg::svd] Input array must have >= 2 dimensions. Received array "
|
|
"with "
|
|
<< a.ndim() << " dimensions.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
const auto m = a.shape(-2);
|
|
const auto n = a.shape(-1);
|
|
const auto rank = a.ndim();
|
|
|
|
auto u_shape = a.shape();
|
|
u_shape[rank - 2] = m;
|
|
u_shape[rank - 1] = m;
|
|
|
|
auto s_shape = a.shape();
|
|
s_shape.pop_back();
|
|
s_shape[rank - 2] = std::min(m, n);
|
|
|
|
auto vt_shape = a.shape();
|
|
vt_shape[rank - 2] = n;
|
|
vt_shape[rank - 1] = n;
|
|
|
|
return array::make_arrays(
|
|
{u_shape, s_shape, vt_shape},
|
|
{a.dtype(), a.dtype(), a.dtype()},
|
|
std::make_shared<SVD>(to_stream(s)),
|
|
{a});
|
|
}
|
|
|
|
array inv_impl(const array& a, bool tri, bool upper, StreamOrDevice s) {
|
|
check_cpu_stream(s, "[linalg::inv]");
|
|
if (a.dtype() != float32) {
|
|
std::ostringstream msg;
|
|
msg << "[linalg::inv] Arrays must type float32. Received array "
|
|
<< "with type " << a.dtype() << ".";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
if (a.ndim() < 2) {
|
|
std::ostringstream msg;
|
|
msg << "[linalg::inv] Arrays must have >= 2 dimensions. Received array "
|
|
"with "
|
|
<< a.ndim() << " dimensions.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
if (a.shape(-1) != a.shape(-2)) {
|
|
throw std::invalid_argument(
|
|
"[linalg::inv] Inverses are only defined for square matrices.");
|
|
}
|
|
|
|
return array(
|
|
a.shape(),
|
|
a.dtype(),
|
|
std::make_shared<Inverse>(to_stream(s), tri, upper),
|
|
{a});
|
|
}
|
|
|
|
array inv(const array& a, StreamOrDevice s /* = {} */) {
|
|
return inv_impl(a, /*tri=*/false, /*upper=*/true, s);
|
|
}
|
|
|
|
array tri_inv(
|
|
const array& a,
|
|
bool upper /* = true */,
|
|
StreamOrDevice s /* = {} */) {
|
|
return inv_impl(a, /*tri=*/true, upper, s);
|
|
}
|
|
|
|
array cholesky(
|
|
const array& a,
|
|
bool upper /* = false */,
|
|
StreamOrDevice s /* = {} */) {
|
|
check_cpu_stream(s, "[linalg::cholesky]");
|
|
if (a.dtype() != float32) {
|
|
std::ostringstream msg;
|
|
msg << "[linalg::cholesky] Arrays must type float32. Received array "
|
|
<< "with type " << a.dtype() << ".";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
if (a.ndim() < 2) {
|
|
std::ostringstream msg;
|
|
msg << "[linalg::cholesky] Arrays must have >= 2 dimensions. Received array "
|
|
"with "
|
|
<< a.ndim() << " dimensions.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
if (a.shape(-1) != a.shape(-2)) {
|
|
throw std::invalid_argument(
|
|
"[linalg::cholesky] Cholesky decomposition is only defined for square "
|
|
"matrices.");
|
|
}
|
|
return array(
|
|
a.shape(),
|
|
a.dtype(),
|
|
std::make_shared<Cholesky>(to_stream(s), upper),
|
|
{a});
|
|
}
|
|
|
|
array pinv(const array& a, StreamOrDevice s /* = {} */) {
|
|
check_cpu_stream(s, "[linalg::pinv]");
|
|
if (a.dtype() != float32) {
|
|
std::ostringstream msg;
|
|
msg << "[linalg::pinv] Arrays must type float32. Received array "
|
|
<< "with type " << a.dtype() << ".";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
if (a.ndim() < 2) {
|
|
std::ostringstream msg;
|
|
msg << "[linalg::pinv] Arrays must have >= 2 dimensions. Received array "
|
|
<< "with " << a.ndim() << " dimensions.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
int m = a.shape(-2);
|
|
int n = a.shape(-1);
|
|
int k = std::min(m, n);
|
|
auto outs = linalg::svd(a, s);
|
|
array U = outs[0];
|
|
array S = outs[1];
|
|
array V = outs[2];
|
|
|
|
Shape starts(a.ndim(), 0);
|
|
auto ends = a.shape();
|
|
int i = a.ndim() - 2;
|
|
int j = a.ndim() - 1;
|
|
|
|
// Prepare U
|
|
ends[i] = m;
|
|
ends[j] = k;
|
|
U = swapaxes(slice(U, starts, ends, s), -1, -2, s);
|
|
|
|
// Prepare V
|
|
ends[i] = k;
|
|
ends[j] = n;
|
|
V = swapaxes(slice(V, starts, ends, s), -1, -2, s);
|
|
|
|
// Prepare S
|
|
S = expand_dims(S, -2, s);
|
|
|
|
return matmul(divide(V, S, s), U);
|
|
}
|
|
|
|
array cholesky_inv(
|
|
const array& L,
|
|
bool upper /* = false */,
|
|
StreamOrDevice s /* = {} */) {
|
|
check_cpu_stream(s, "[linalg::cholesky_inv]");
|
|
if (L.dtype() != float32) {
|
|
std::ostringstream msg;
|
|
msg << "[linalg::cholesky_inv] Arrays must type float32. Received array "
|
|
<< "with type " << L.dtype() << ".";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
if (L.ndim() < 2) {
|
|
std::ostringstream msg;
|
|
msg << "[linalg::cholesky_inv] Arrays must have >= 2 dimensions. Received array "
|
|
"with "
|
|
<< L.ndim() << " dimensions.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
if (L.shape(-1) != L.shape(-2)) {
|
|
throw std::invalid_argument(
|
|
"[linalg::cholesky_inv] Cholesky inverse is only defined for square "
|
|
"matrices.");
|
|
}
|
|
|
|
array L_inv = tri_inv(L, upper, s);
|
|
if (upper) {
|
|
return matmul(L_inv, swapaxes(L_inv, -1, -2, s), s);
|
|
} else {
|
|
return matmul(swapaxes(L_inv, -1, -2, s), L_inv, s);
|
|
}
|
|
}
|
|
|
|
array cross(
|
|
const array& a,
|
|
const array& b,
|
|
int axis /* = -1 */,
|
|
StreamOrDevice s /* = {} */) {
|
|
auto check_ax = [axis](const array& arr) {
|
|
if (axis >= static_cast<int>(arr.ndim()) || axis + arr.ndim() < 0) {
|
|
std::ostringstream msg;
|
|
msg << "[linalg::cross] axis " << axis << " invalid for array with "
|
|
<< arr.ndim() << " dimensions.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
if (arr.shape(axis) < 2 || arr.shape(axis) > 3) {
|
|
throw std::invalid_argument(
|
|
"[linalg::cross] The specified axis must have size 2 or 3.");
|
|
}
|
|
};
|
|
check_ax(a);
|
|
check_ax(b);
|
|
|
|
bool a_2d = a.shape(axis) == 2;
|
|
bool b_2d = b.shape(axis) == 2;
|
|
|
|
auto out_type = promote_types(a.dtype(), b.dtype());
|
|
auto ashape = a.shape();
|
|
auto bshape = b.shape();
|
|
|
|
ashape[axis < 0 ? axis + a.ndim() : axis] = 3;
|
|
bshape[axis < 0 ? axis + b.ndim() : axis] = 3;
|
|
auto out_shape = broadcast_shapes(ashape, bshape);
|
|
|
|
if (axis < 0) {
|
|
axis += out_shape.size();
|
|
}
|
|
|
|
out_shape[axis] = a_2d ? 2 : 3;
|
|
auto a_ = broadcast_to(astype(a, out_type, s), out_shape, s);
|
|
|
|
out_shape[axis] = b_2d ? 2 : 3;
|
|
auto b_ = broadcast_to(astype(b, out_type, s), out_shape, s);
|
|
|
|
auto a_splits = split(a_, a_2d ? 2 : 3, axis);
|
|
auto b_splits = split(b_, b_2d ? 2 : 3, axis);
|
|
|
|
std::vector<array> outputs;
|
|
if (a_2d && b_2d) {
|
|
auto z = zeros_like(a_splits[0], s);
|
|
outputs.push_back(z);
|
|
outputs.push_back(z);
|
|
} else if (b_2d) {
|
|
outputs.push_back(negative(multiply(a_splits[2], b_splits[1], s), s));
|
|
outputs.push_back(multiply(a_splits[2], b_splits[0], s));
|
|
} else if (a_2d) {
|
|
outputs.push_back(multiply(a_splits[1], b_splits[2], s));
|
|
outputs.push_back(negative(multiply(a_splits[0], b_splits[2], s), s));
|
|
} else {
|
|
outputs.push_back(subtract(
|
|
multiply(a_splits[1], b_splits[2], s),
|
|
multiply(a_splits[2], b_splits[1], s),
|
|
s));
|
|
outputs.push_back(subtract(
|
|
multiply(a_splits[2], b_splits[0], s),
|
|
multiply(a_splits[0], b_splits[2], s),
|
|
s));
|
|
}
|
|
outputs.push_back(subtract(
|
|
multiply(a_splits[0], b_splits[1], s),
|
|
multiply(a_splits[1], b_splits[0], s),
|
|
s));
|
|
return concatenate(outputs, axis, s);
|
|
}
|
|
|
|
void validate_eigh(
|
|
const array& a,
|
|
const StreamOrDevice& stream,
|
|
const std::string fname) {
|
|
check_cpu_stream(stream, fname);
|
|
if (a.dtype() != float32) {
|
|
std::ostringstream msg;
|
|
msg << fname << " Arrays must have type float32. Received array "
|
|
<< "with type " << a.dtype() << ".";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
if (a.ndim() < 2) {
|
|
std::ostringstream msg;
|
|
msg << fname << " Arrays must have >= 2 dimensions. Received array with "
|
|
<< a.ndim() << " dimensions.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
if (a.shape(-1) != a.shape(-2)) {
|
|
throw std::invalid_argument(fname + " Only defined for square matrices.");
|
|
}
|
|
}
|
|
|
|
array eigvalsh(
|
|
const array& a,
|
|
std::string UPLO /* = "L" */,
|
|
StreamOrDevice s /* = {} */) {
|
|
validate_eigh(a, s, "[linalg::eigvalsh]");
|
|
Shape out_shape(a.shape().begin(), a.shape().end() - 1);
|
|
return array(
|
|
std::move(out_shape),
|
|
a.dtype(),
|
|
std::make_shared<Eigh>(to_stream(s), UPLO, false),
|
|
{a});
|
|
}
|
|
|
|
std::pair<array, array> eigh(
|
|
const array& a,
|
|
std::string UPLO /* = "L" */,
|
|
StreamOrDevice s /* = {} */) {
|
|
validate_eigh(a, s, "[linalg::eigh]");
|
|
auto out = array::make_arrays(
|
|
{Shape(a.shape().begin(), a.shape().end() - 1), a.shape()},
|
|
{a.dtype(), a.dtype()},
|
|
std::make_shared<Eigh>(to_stream(s), UPLO, true),
|
|
{a});
|
|
return std::make_pair(out[0], out[1]);
|
|
}
|
|
|
|
} // namespace mlx::core::linalg
|