mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 09:21:16 +08:00

* try cpp 20 for compile * unary, binary, ternary in jit * nits * fix gather/scatter * fix rebase * reorg compile * add ternary to compile * jit copy * jit compile flag * fix build * use linked function for ternary * some nits * docs + circle min size build * docs + circle min size build * fix extension * fix no cpu build * improve includes
380 lines
11 KiB
C++
380 lines
11 KiB
C++
// Copyright © 2023-2024 Apple Inc.
|
|
#include <fmt/format.h>
|
|
|
|
#include "mlx/backend/common/compiled.h"
|
|
#include "mlx/backend/metal/copy.h"
|
|
#include "mlx/backend/metal/device.h"
|
|
#include "mlx/backend/metal/jit/includes.h"
|
|
#include "mlx/backend/metal/jit/indexing.h"
|
|
#include "mlx/backend/metal/utils.h"
|
|
#include "mlx/primitives.h"
|
|
#include "mlx/utils.h"
|
|
|
|
namespace mlx::core {
|
|
|
|
constexpr int METAL_MAX_INDEX_ARRAYS = 20;
|
|
|
|
std::pair<std::string, std::string> make_index_args(
|
|
const std::string& idx_type,
|
|
int nidx) {
|
|
std::ostringstream idx_args;
|
|
std::ostringstream idx_arr;
|
|
for (int i = 0; i < nidx; ++i) {
|
|
idx_args << fmt::format(
|
|
"const device {0} *idx{1} [[buffer({2})]],", idx_type, i, 20 + i);
|
|
idx_arr << fmt::format("idx{0}", i);
|
|
if (i < nidx - 1) {
|
|
idx_args << "\n";
|
|
idx_arr << ",";
|
|
}
|
|
}
|
|
return {idx_args.str(), idx_arr.str()};
|
|
}
|
|
|
|
void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|
auto& src = inputs[0];
|
|
int nidx = inputs.size() - 1;
|
|
|
|
if (nidx > METAL_MAX_INDEX_ARRAYS) {
|
|
std::ostringstream msg;
|
|
msg << "[Gather::eval_gpu] Gathering with more than "
|
|
<< METAL_MAX_INDEX_ARRAYS << " index arrays not yet supported.";
|
|
throw std::runtime_error(msg.str());
|
|
}
|
|
|
|
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
|
if (out.size() == 0) {
|
|
return;
|
|
}
|
|
|
|
auto& s = stream();
|
|
auto& d = metal::device(s.device);
|
|
|
|
int idx_ndim = nidx ? inputs[1].ndim() : 0;
|
|
size_t ndim = src.ndim();
|
|
|
|
std::string lib_name;
|
|
std::string kernel_name;
|
|
std::string idx_type_name = nidx ? type_to_name(inputs[1]) : "";
|
|
{
|
|
std::ostringstream kname;
|
|
kname << "gather" << type_to_name(out) << idx_type_name << "_" << nidx
|
|
<< "_" << idx_ndim;
|
|
lib_name = kname.str();
|
|
kernel_name = lib_name;
|
|
}
|
|
|
|
auto lib = d.get_library(lib_name);
|
|
if (lib == nullptr) {
|
|
std::ostringstream kernel_source;
|
|
kernel_source << metal::utils() << metal::gather();
|
|
std::string out_type_str = get_type_string(out.dtype());
|
|
std::string idx_type_str =
|
|
nidx ? get_type_string(inputs[1].dtype()) : "bool";
|
|
auto [idx_args, idx_arr] = make_index_args(idx_type_str, nidx);
|
|
|
|
// Index dimension specializations
|
|
kernel_source << fmt::format(
|
|
gather_kernels,
|
|
type_to_name(out) + idx_type_name,
|
|
out_type_str,
|
|
idx_type_str,
|
|
nidx,
|
|
idx_args,
|
|
idx_arr,
|
|
idx_ndim);
|
|
lib = d.get_library(lib_name, kernel_source.str());
|
|
}
|
|
|
|
auto& compute_encoder = d.get_command_encoder(s.index);
|
|
auto kernel = d.get_kernel(kernel_name, lib);
|
|
compute_encoder->setComputePipelineState(kernel);
|
|
|
|
size_t slice_size = 1;
|
|
for (auto s : slice_sizes_) {
|
|
slice_size *= s;
|
|
}
|
|
|
|
// Launch 2D grid of threads: indices x slice
|
|
size_t dim0 = out.size() / slice_size;
|
|
size_t dim1 = slice_size;
|
|
auto group_dims = get_block_dims(dim0, dim1, 1);
|
|
MTL::Size grid_dims = MTL::Size(dim0, dim1, 1);
|
|
|
|
// Collect all idx shapes and strides into one place
|
|
std::vector<int> idx_shapes;
|
|
std::vector<size_t> idx_strides;
|
|
|
|
for (int i = 0; i < nidx; ++i) {
|
|
idx_shapes.insert(
|
|
idx_shapes.end(),
|
|
inputs[i + 1].shape().begin(),
|
|
inputs[i + 1].shape().end());
|
|
|
|
idx_strides.insert(
|
|
idx_strides.end(),
|
|
inputs[i + 1].strides().begin(),
|
|
inputs[i + 1].strides().end());
|
|
}
|
|
|
|
// Set all the buffers
|
|
compute_encoder.set_input_array(src, 0);
|
|
compute_encoder.set_output_array(out, 1);
|
|
|
|
// Set source info
|
|
compute_encoder->setBytes(src.shape().data(), ndim * sizeof(int), 2);
|
|
compute_encoder->setBytes(src.strides().data(), ndim * sizeof(size_t), 3);
|
|
compute_encoder->setBytes(&ndim, sizeof(size_t), 4);
|
|
compute_encoder->setBytes(slice_sizes_.data(), ndim * sizeof(int), 5);
|
|
compute_encoder->setBytes(axes_.data(), nidx * sizeof(int), 6);
|
|
|
|
// Set index info
|
|
//
|
|
// We don't need to check for empty idx_shapes because gather has a
|
|
// idx_ndim == 0 specialization
|
|
compute_encoder->setBytes(
|
|
idx_shapes.data(), idx_shapes.size() * sizeof(int), 7);
|
|
compute_encoder->setBytes(
|
|
idx_strides.data(), idx_strides.size() * sizeof(size_t), 8);
|
|
compute_encoder->setBytes(&idx_ndim, sizeof(int), 9);
|
|
|
|
// Set index buffers
|
|
for (int i = 0; i < nidx; ++i) {
|
|
compute_encoder.set_input_array(inputs[i + 1], 20 + i);
|
|
}
|
|
|
|
// Launch grid
|
|
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
|
}
|
|
|
|
void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|
if (size_of(out.dtype()) == 8) {
|
|
std::ostringstream msg;
|
|
msg << "[Scatter::eval_gpu] Does not support " << out.dtype();
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
int nidx = axes_.size();
|
|
if (nidx > METAL_MAX_INDEX_ARRAYS) {
|
|
std::ostringstream msg;
|
|
msg << "[Scatter::eval_gpu] Gathering with more than "
|
|
<< METAL_MAX_INDEX_ARRAYS << " index arrays not yet supported.";
|
|
throw std::runtime_error(msg.str());
|
|
}
|
|
|
|
// Copy src into out
|
|
auto copy_type =
|
|
inputs[0].data_size() == 1 ? CopyType::Scalar : CopyType::General;
|
|
copy_gpu(inputs[0], out, copy_type);
|
|
|
|
// Empty update
|
|
if (inputs.back().size() == 0) {
|
|
return;
|
|
}
|
|
|
|
// Get stream
|
|
auto& s = stream();
|
|
auto& d = metal::device(s.device);
|
|
|
|
int idx_ndim = nidx ? inputs[1].ndim() : 0;
|
|
bool index_nd1_specialization = (idx_ndim == 1);
|
|
|
|
// Bail from fast path (1d index specialization) if scatter dims aren't
|
|
// the outermost dims and contiguous since update access won't be raster
|
|
// order.
|
|
for (auto i = 0; i < axes_.size() && index_nd1_specialization; i++) {
|
|
index_nd1_specialization &= (axes_[i] == i);
|
|
}
|
|
|
|
// Bail from fast path (1d index specialization) if any of the dims are
|
|
// broadcasted, since we can't rely on linear indexing in that case.
|
|
for (int i = 1; i < inputs.size() && index_nd1_specialization; i++) {
|
|
index_nd1_specialization &= inputs[i].flags().row_contiguous;
|
|
}
|
|
|
|
std::string lib_name;
|
|
std::string kernel_name;
|
|
std::string idx_type_name = nidx ? type_to_name(inputs[1]) : "";
|
|
std::string op_name;
|
|
switch (reduce_type_) {
|
|
case Scatter::None:
|
|
op_name = "none";
|
|
break;
|
|
case Scatter::Sum:
|
|
op_name = "sum";
|
|
break;
|
|
case Scatter::Prod:
|
|
op_name = "prod";
|
|
break;
|
|
case Scatter::Max:
|
|
op_name = "max";
|
|
break;
|
|
case Scatter::Min:
|
|
op_name = "min";
|
|
break;
|
|
}
|
|
|
|
{
|
|
std::ostringstream kname;
|
|
if (index_nd1_specialization) {
|
|
kname << "scatter_1d_index" << type_to_name(out) << idx_type_name;
|
|
} else {
|
|
kname << "scatter" << type_to_name(out) << idx_type_name;
|
|
}
|
|
kname << "_" << op_name << "_" << nidx;
|
|
lib_name = kname.str();
|
|
kernel_name = kname.str();
|
|
}
|
|
|
|
auto lib = d.get_library(lib_name);
|
|
if (lib == nullptr) {
|
|
std::ostringstream kernel_source;
|
|
kernel_source << metal::utils() << metal::reduction() << metal::scatter();
|
|
|
|
std::string out_type_str = get_type_string(out.dtype());
|
|
std::string idx_type_str =
|
|
nidx ? get_type_string(inputs[1].dtype()) : "bool";
|
|
std::string op_type;
|
|
switch (reduce_type_) {
|
|
case Scatter::None:
|
|
op_type = "None";
|
|
break;
|
|
case Scatter::Sum:
|
|
op_type = "Sum<{0}>";
|
|
break;
|
|
case Scatter::Prod:
|
|
op_type = "Prod<{0}>";
|
|
break;
|
|
case Scatter::Max:
|
|
op_type = "Max<{0}>";
|
|
break;
|
|
case Scatter::Min:
|
|
op_type = "Min<{0}>";
|
|
break;
|
|
}
|
|
if (reduce_type_ != Scatter::None) {
|
|
op_type = fmt::format(op_type, out_type_str);
|
|
}
|
|
auto [idx_args, idx_arr] = make_index_args(idx_type_str, nidx);
|
|
|
|
kernel_source << fmt::format(
|
|
scatter_kernels,
|
|
type_to_name(out) + idx_type_name + "_" + op_name,
|
|
out_type_str,
|
|
idx_type_str,
|
|
op_type,
|
|
nidx,
|
|
idx_args,
|
|
idx_arr);
|
|
lib = d.get_library(lib_name, kernel_source.str());
|
|
}
|
|
|
|
auto& compute_encoder = d.get_command_encoder(s.index);
|
|
auto kernel = d.get_kernel(kernel_name, lib);
|
|
|
|
auto& upd = inputs.back();
|
|
size_t nthreads = upd.size();
|
|
|
|
compute_encoder->setComputePipelineState(kernel);
|
|
|
|
// Set all the buffers
|
|
compute_encoder.set_input_array(upd, 1);
|
|
compute_encoder.set_output_array(out, 2);
|
|
|
|
// Set update info
|
|
uint upd_ndim = upd.ndim();
|
|
size_t upd_size = 1;
|
|
for (int i = idx_ndim; i < upd.ndim(); ++i) {
|
|
upd_size *= upd.shape(i);
|
|
}
|
|
if (index_nd1_specialization) {
|
|
compute_encoder->setBytes(
|
|
out.shape().data(), out.shape().size() * sizeof(int), 3);
|
|
compute_encoder->setBytes(
|
|
out.strides().data(), out.strides().size() * sizeof(size_t), 4);
|
|
compute_encoder->setBytes(&upd_size, sizeof(size_t), 5);
|
|
|
|
// Set index buffers
|
|
for (int i = 0; i < nidx; ++i) {
|
|
compute_encoder.set_input_array(inputs[i + 1], 20 + i);
|
|
}
|
|
|
|
// Launch grid
|
|
MTL::Size grid_dims = MTL::Size(upd_size, nthreads / upd_size, 1);
|
|
MTL::Size group_dims = get_block_dims(upd_size, nthreads / upd_size, 1);
|
|
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
|
|
|
} else {
|
|
// Collect all idx shapes and strides into one place
|
|
std::vector<int> idx_shapes;
|
|
std::vector<size_t> idx_strides;
|
|
|
|
for (int i = 0; i < nidx; ++i) {
|
|
idx_shapes.insert(
|
|
idx_shapes.end(),
|
|
inputs[i + 1].shape().begin(),
|
|
inputs[i + 1].shape().end());
|
|
|
|
idx_strides.insert(
|
|
idx_strides.end(),
|
|
inputs[i + 1].strides().begin(),
|
|
inputs[i + 1].strides().end());
|
|
}
|
|
|
|
if (upd_ndim == 0) {
|
|
// Need placeholders so Metal doesn't compalain
|
|
int shape_ = 0;
|
|
size_t stride_ = 0;
|
|
compute_encoder->setBytes(&shape_, sizeof(int), 3);
|
|
compute_encoder->setBytes(&stride_, sizeof(size_t), 4);
|
|
} else {
|
|
compute_encoder->setBytes(upd.shape().data(), upd_ndim * sizeof(int), 3);
|
|
compute_encoder->setBytes(
|
|
upd.strides().data(), upd_ndim * sizeof(size_t), 4);
|
|
}
|
|
compute_encoder->setBytes(&upd_ndim, sizeof(size_t), 5);
|
|
compute_encoder->setBytes(&upd_size, sizeof(size_t), 6);
|
|
|
|
// Set output info
|
|
size_t out_ndim = out.ndim();
|
|
if (out_ndim == 0) {
|
|
// Need placeholders so Metal doesn't compalain
|
|
int shape_ = 0;
|
|
size_t stride_ = 0;
|
|
compute_encoder->setBytes(&shape_, sizeof(int), 7);
|
|
compute_encoder->setBytes(&stride_, sizeof(size_t), 8);
|
|
} else {
|
|
compute_encoder->setBytes(out.shape().data(), out_ndim * sizeof(int), 7);
|
|
compute_encoder->setBytes(
|
|
out.strides().data(), out_ndim * sizeof(size_t), 8);
|
|
}
|
|
compute_encoder->setBytes(&out_ndim, sizeof(size_t), 9);
|
|
compute_encoder->setBytes(axes_.data(), axes_.size() * sizeof(int), 10);
|
|
|
|
// Set index info
|
|
if (idx_ndim == 0) {
|
|
// Add a 0 in idx_shapes and strides to avoid the missing buffer binding
|
|
// error in the metal API.
|
|
idx_shapes.push_back(0);
|
|
idx_strides.push_back(0);
|
|
}
|
|
compute_encoder->setBytes(
|
|
idx_shapes.data(), idx_shapes.size() * sizeof(int), 11);
|
|
compute_encoder->setBytes(
|
|
idx_strides.data(), idx_strides.size() * sizeof(size_t), 12);
|
|
compute_encoder->setBytes(&idx_ndim, sizeof(int), 13);
|
|
|
|
// Set index buffers
|
|
for (int i = 0; i < nidx; ++i) {
|
|
compute_encoder.set_input_array(inputs[i + 1], 20 + i);
|
|
}
|
|
|
|
// Launch grid
|
|
MTL::Size grid_dims = MTL::Size(upd_size, nthreads / upd_size, 1);
|
|
MTL::Size group_dims = get_block_dims(upd_size, nthreads / upd_size, 1);
|
|
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
|
}
|
|
}
|
|
|
|
} // namespace mlx::core
|