mlx/mlx/backend/metal/kernels/layer_norm.metal
Awni Hannun 40b6d67333
Fixes for large arrays with a few ops (#1299)
* fixes for large arrays with a few ops

* fix bug

* fix all of copy
2024-07-30 17:18:39 -07:00

557 lines
19 KiB
Metal

// Copyright © 2024 Apple Inc.
#include <metal_common>
#include <metal_simdgroup>
#include "mlx/backend/metal/kernels/bf16.h"
#include "mlx/backend/metal/kernels/defines.h"
#include "mlx/backend/metal/kernels/utils.h"
using namespace metal;
template <typename T, int N_READS = RMS_N_READS>
[[kernel]] void layer_norm_single_row(
const device T* x,
const device T* w,
const device T* b,
device T* out,
constant float& eps,
constant uint& axis_size,
constant uint& w_stride,
constant uint& b_stride,
uint gid [[threadgroup_position_in_grid]],
uint lid [[thread_position_in_threadgroup]],
uint simd_lane_id [[thread_index_in_simdgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
float sumx = 0;
float sumx2 = 0;
float thread_x[N_READS];
constexpr int SIMD_SIZE = 32;
threadgroup float local_sumx[SIMD_SIZE];
threadgroup float local_sumx2[SIMD_SIZE];
threadgroup float local_mean[1];
threadgroup float local_normalizer[1];
x += gid * size_t(axis_size) + lid * N_READS;
w += w_stride * lid * N_READS;
b += b_stride * lid * N_READS;
if (lid * N_READS + N_READS <= axis_size) {
for (int i = 0; i < N_READS; i++) {
thread_x[i] = x[i];
sumx2 += thread_x[i] * thread_x[i];
sumx += thread_x[i];
}
} else {
for (int i = 0; i < N_READS; i++) {
if ((lid * N_READS + i) < axis_size) {
thread_x[i] = x[i];
sumx2 += thread_x[i] * thread_x[i];
sumx += thread_x[i];
}
}
}
sumx = simd_sum(sumx);
sumx2 = simd_sum(sumx2);
// Initialize shared memory
if (simd_group_id == 0) {
local_sumx[simd_lane_id] = 0;
local_sumx2[simd_lane_id] = 0;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// Write simd accumulations into shared memory
if (simd_lane_id == 0) {
local_sumx[simd_group_id] = sumx;
local_sumx2[simd_group_id] = sumx2;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// Accumulate over simd groups
if (simd_group_id == 0) {
sumx = simd_sum(local_sumx[simd_lane_id]);
sumx2 = simd_sum(local_sumx2[simd_lane_id]);
if (simd_lane_id == 0) {
float mean = sumx / axis_size;
float variance = sumx2 / axis_size - mean * mean;
local_mean[0] = mean;
local_normalizer[0] = metal::precise::rsqrt(variance + eps);
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
float mean = local_mean[0];
float normalizer = local_normalizer[0];
// Write the outputs
out += gid * size_t(axis_size) + lid * N_READS;
if (lid * N_READS + N_READS <= axis_size) {
for (int i = 0; i < N_READS; i++) {
thread_x[i] = (thread_x[i] - mean) * normalizer;
out[i] = w[w_stride * i] * static_cast<T>(thread_x[i]) + b[b_stride * i];
}
} else {
for (int i = 0; i < N_READS; i++) {
if ((lid * N_READS + i) < axis_size) {
thread_x[i] = (thread_x[i] - mean) * normalizer;
out[i] =
w[w_stride * i] * static_cast<T>(thread_x[i]) + b[b_stride * i];
}
}
}
}
template <typename T, int N_READS = RMS_N_READS>
[[kernel]] void layer_norm_looped(
const device T* x,
const device T* w,
const device T* b,
device T* out,
constant float& eps,
constant uint& axis_size,
constant uint& w_stride,
constant uint& b_stride,
uint gid [[threadgroup_position_in_grid]],
uint lid [[thread_position_in_threadgroup]],
uint lsize [[threads_per_threadgroup]],
uint simd_lane_id [[thread_index_in_simdgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
float sumx = 0;
float sumx2 = 0;
constexpr int SIMD_SIZE = 32;
threadgroup float local_sumx[SIMD_SIZE];
threadgroup float local_sumx2[SIMD_SIZE];
threadgroup float local_mean[1];
threadgroup float local_normalizer[1];
x += gid * size_t(axis_size) + lid * N_READS;
w += w_stride * lid * N_READS;
b += b_stride * lid * N_READS;
for (uint r = 0; r < axis_size; r += lsize * N_READS) {
if (r + lid * N_READS + N_READS <= axis_size) {
for (int i = 0; i < N_READS; i++) {
float xi = x[i + r];
sumx2 += xi * xi;
sumx += xi;
}
} else {
for (int i = 0; i < N_READS; i++) {
if ((r + lid * N_READS + i) < axis_size) {
float xi = x[i + r];
sumx2 += xi * xi;
sumx += xi;
}
}
}
}
sumx = simd_sum(sumx);
sumx2 = simd_sum(sumx2);
// Initialize shared memory
if (simd_group_id == 0) {
local_sumx[simd_lane_id] = 0;
local_sumx2[simd_lane_id] = 0;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// Write simd accumulations into shared memory
if (simd_lane_id == 0) {
local_sumx[simd_group_id] = sumx;
local_sumx2[simd_group_id] = sumx2;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// Accumulate over simd groups
if (simd_group_id == 0) {
sumx = simd_sum(local_sumx[simd_lane_id]);
sumx2 = simd_sum(local_sumx2[simd_lane_id]);
if (simd_lane_id == 0) {
float mean = sumx / axis_size;
float variance = sumx2 / axis_size - mean * mean;
local_mean[0] = mean;
local_normalizer[0] = metal::precise::rsqrt(variance + eps);
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
float mean = local_mean[0];
float normalizer = local_normalizer[0];
// Write the outputs
out += gid * size_t(axis_size) + lid * N_READS;
for (uint r = 0; r < axis_size; r += lsize * N_READS) {
if (r + lid * N_READS + N_READS <= axis_size) {
for (int i = 0; i < N_READS; i++) {
float xi = (x[r + i] - mean) * normalizer;
out[r + i] =
w[w_stride * (i + r)] * static_cast<T>(xi) + b[b_stride * (i + r)];
}
} else {
for (int i = 0; i < N_READS; i++) {
if ((r + lid * N_READS + i) < axis_size) {
float xi = (x[r + i] - mean) * normalizer;
out[r + i] = w[w_stride * (i + r)] * static_cast<T>(xi) +
b[b_stride * (i + r)];
}
}
}
}
}
template <typename T, int N_READS = RMS_N_READS>
[[kernel]] void vjp_layer_norm_single_row(
const device T* x,
const device T* w,
const device T* g,
device T* gx,
device T* gw,
constant float& eps,
constant uint& axis_size,
constant uint& w_stride,
uint gid [[threadgroup_position_in_grid]],
uint lid [[thread_position_in_threadgroup]],
uint simd_lane_id [[thread_index_in_simdgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
// Advance the input pointers
x += gid * size_t(axis_size) + lid * N_READS;
g += gid * size_t(axis_size) + lid * N_READS;
w += w_stride * lid * N_READS;
// Allocate registers for the computation and accumulators
float thread_x[N_READS];
float thread_w[N_READS];
float thread_g[N_READS];
float sumx = 0;
float sumx2 = 0;
float sumwg = 0;
float sumwgx = 0;
constexpr int SIMD_SIZE = 32;
threadgroup float local_sumx[SIMD_SIZE];
threadgroup float local_sumx2[SIMD_SIZE];
threadgroup float local_sumwg[SIMD_SIZE];
threadgroup float local_sumwgx[SIMD_SIZE];
threadgroup float local_mean[1];
threadgroup float local_normalizer[1];
threadgroup float local_meanwg[1];
threadgroup float local_meanwgx[1];
if (lid * N_READS + N_READS <= axis_size) {
for (int i = 0; i < N_READS; i++) {
thread_x[i] = x[i];
thread_w[i] = w[i * w_stride];
thread_g[i] = g[i];
float wg = thread_w[i] * thread_g[i];
sumx += thread_x[i];
sumx2 += thread_x[i] * thread_x[i];
sumwg += wg;
sumwgx += wg * thread_x[i];
}
} else {
for (int i = 0; i < N_READS; i++) {
if ((lid * N_READS + i) < axis_size) {
thread_x[i] = x[i];
thread_w[i] = w[i * w_stride];
thread_g[i] = g[i];
float wg = thread_w[i] * thread_g[i];
sumx += thread_x[i];
sumx2 += thread_x[i] * thread_x[i];
sumwg += wg;
sumwgx += wg * thread_x[i];
}
}
}
sumx = simd_sum(sumx);
sumx2 = simd_sum(sumx2);
sumwg = simd_sum(sumwg);
sumwgx = simd_sum(sumwgx);
// Initialize shared memory
if (simd_group_id == 0) {
local_sumx[simd_lane_id] = 0;
local_sumx2[simd_lane_id] = 0;
local_sumwg[simd_lane_id] = 0;
local_sumwgx[simd_lane_id] = 0;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// Write simd accumulations into shared memory
if (simd_lane_id == 0) {
local_sumx[simd_group_id] = sumx;
local_sumx2[simd_group_id] = sumx2;
local_sumwg[simd_group_id] = sumwg;
local_sumwgx[simd_group_id] = sumwgx;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// Accumulate over simd groups
if (simd_group_id == 0) {
sumx = simd_sum(local_sumx[simd_lane_id]);
sumx2 = simd_sum(local_sumx2[simd_lane_id]);
sumwg = simd_sum(local_sumwg[simd_lane_id]);
sumwgx = simd_sum(local_sumwgx[simd_lane_id]);
if (simd_lane_id == 0) {
float mean = sumx / axis_size;
float variance = sumx2 / axis_size - mean * mean;
local_mean[0] = mean;
local_normalizer[0] = metal::precise::rsqrt(variance + eps);
local_meanwg[0] = sumwg / axis_size;
local_meanwgx[0] = sumwgx / axis_size;
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
float mean = local_mean[0];
float normalizer = local_normalizer[0];
float meanwg = local_meanwg[0];
float meanwgxc = local_meanwgx[0] - meanwg * mean;
float normalizer2 = normalizer * normalizer;
// Write the outputs
gx += gid * size_t(axis_size) + lid * N_READS;
gw += gid * size_t(axis_size) + lid * N_READS;
if (lid * N_READS + N_READS <= axis_size) {
for (int i = 0; i < N_READS; i++) {
thread_x[i] = (thread_x[i] - mean) * normalizer;
gx[i] = static_cast<T>(
normalizer * (thread_w[i] * thread_g[i] - meanwg) -
thread_x[i] * meanwgxc * normalizer2);
gw[i] = static_cast<T>(thread_g[i] * thread_x[i]);
}
} else {
for (int i = 0; i < N_READS; i++) {
if ((lid * N_READS + i) < axis_size) {
thread_x[i] = (thread_x[i] - mean) * normalizer;
gx[i] = static_cast<T>(
normalizer * (thread_w[i] * thread_g[i] - meanwg) -
thread_x[i] * meanwgxc * normalizer2);
gw[i] = static_cast<T>(thread_g[i] * thread_x[i]);
}
}
}
}
template <typename T, int N_READS = RMS_N_READS>
[[kernel]] void vjp_layer_norm_looped(
const device T* x,
const device T* w,
const device T* g,
device T* gx,
device T* gw,
constant float& eps,
constant uint& axis_size,
constant uint& w_stride,
uint gid [[threadgroup_position_in_grid]],
uint lid [[thread_position_in_threadgroup]],
uint lsize [[threads_per_threadgroup]],
uint simd_lane_id [[thread_index_in_simdgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
// Advance the input pointers
x += gid * size_t(axis_size) + lid * N_READS;
g += gid * size_t(axis_size) + lid * N_READS;
w += w_stride * lid * N_READS;
// Allocate registers for the accumulators
float sumx = 0;
float sumx2 = 0;
float sumwg = 0;
float sumwgx = 0;
constexpr int SIMD_SIZE = 32;
threadgroup float local_sumx[SIMD_SIZE];
threadgroup float local_sumx2[SIMD_SIZE];
threadgroup float local_sumwg[SIMD_SIZE];
threadgroup float local_sumwgx[SIMD_SIZE];
threadgroup float local_mean[1];
threadgroup float local_normalizer[1];
threadgroup float local_meanwg[1];
threadgroup float local_meanwgx[1];
for (uint r = 0; r < axis_size; r += lsize * N_READS) {
if (r + lid * N_READS + N_READS <= axis_size) {
for (int i = 0; i < N_READS; i++) {
float xi = x[i + r];
float wi = w[(i + r) * w_stride];
float gi = g[i + r];
float wg = wi * gi;
sumx += xi;
sumx2 += xi * xi;
sumwg += wg;
sumwgx += wg * xi;
}
} else {
for (int i = 0; i < N_READS; i++) {
if ((r + lid * N_READS + i) < axis_size) {
float xi = x[i + r];
float wi = w[(i + r) * w_stride];
float gi = g[i + r];
float wg = wi * gi;
sumx += xi;
sumx2 += xi * xi;
sumwg += wg;
sumwgx += wg * xi;
}
}
}
}
sumx = simd_sum(sumx);
sumx2 = simd_sum(sumx2);
sumwg = simd_sum(sumwg);
sumwgx = simd_sum(sumwgx);
// Initialize shared memory
if (simd_group_id == 0) {
local_sumx[simd_lane_id] = 0;
local_sumx2[simd_lane_id] = 0;
local_sumwg[simd_lane_id] = 0;
local_sumwgx[simd_lane_id] = 0;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// Write simd accumulations into shared memory
if (simd_lane_id == 0) {
local_sumx[simd_group_id] = sumx;
local_sumx2[simd_group_id] = sumx2;
local_sumwg[simd_group_id] = sumwg;
local_sumwgx[simd_group_id] = sumwgx;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// Accumulate over simd groups
if (simd_group_id == 0) {
sumx = simd_sum(local_sumx[simd_lane_id]);
sumx2 = simd_sum(local_sumx2[simd_lane_id]);
sumwg = simd_sum(local_sumwg[simd_lane_id]);
sumwgx = simd_sum(local_sumwgx[simd_lane_id]);
if (simd_lane_id == 0) {
float mean = sumx / axis_size;
float variance = sumx2 / axis_size - mean * mean;
local_mean[0] = mean;
local_normalizer[0] = metal::precise::rsqrt(variance + eps);
local_meanwg[0] = sumwg / axis_size;
local_meanwgx[0] = sumwgx / axis_size;
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
float mean = local_mean[0];
float normalizer = local_normalizer[0];
float meanwg = local_meanwg[0];
float meanwgxc = local_meanwgx[0] - meanwg * mean;
float normalizer2 = normalizer * normalizer;
// Write the outputs
gx += gid * size_t(axis_size) + lid * N_READS;
gw += gid * size_t(axis_size) + lid * N_READS;
for (uint r = 0; r < axis_size; r += lsize * N_READS) {
if (r + lid * N_READS + N_READS <= axis_size) {
for (int i = 0; i < N_READS; i++) {
float xi = (x[i + r] - mean) * normalizer;
float wi = w[(i + r) * w_stride];
float gi = g[i + r];
gx[i + r] = static_cast<T>(
normalizer * (wi * gi - meanwg) - xi * meanwgxc * normalizer2);
gw[i + r] = static_cast<T>(gi * xi);
}
} else {
for (int i = 0; i < N_READS; i++) {
if ((r + lid * N_READS + i) < axis_size) {
float xi = (x[i + r] - mean) * normalizer;
float wi = w[(i + r) * w_stride];
float gi = g[i + r];
gx[i + r] = static_cast<T>(
normalizer * (wi * gi - meanwg) - xi * meanwgxc * normalizer2);
gw[i + r] = static_cast<T>(gi * xi);
}
}
}
}
}
// clang-format off
#define instantiate_layer_norm_single_row(name, itype) \
template [[host_name("layer_norm" #name)]] [[kernel]] void \
layer_norm_single_row<itype>( \
const device itype* x, \
const device itype* w, \
const device itype* b, \
device itype* out, \
constant float& eps, \
constant uint& axis_size, \
constant uint& w_stride, \
constant uint& b_stride, \
uint gid [[thread_position_in_grid]], \
uint lid [[thread_position_in_threadgroup]], \
uint simd_lane_id [[thread_index_in_simdgroup]], \
uint simd_group_id [[simdgroup_index_in_threadgroup]]); \
template [[host_name("vjp_layer_norm" #name)]] [[kernel]] void \
vjp_layer_norm_single_row<itype>( \
const device itype* x, \
const device itype* w, \
const device itype* g, \
device itype* gx, \
device itype* gw, \
constant float& eps, \
constant uint& axis_size, \
constant uint& w_stride, \
uint gid [[thread_position_in_grid]], \
uint lid [[thread_position_in_threadgroup]], \
uint simd_lane_id [[thread_index_in_simdgroup]], \
uint simd_group_id [[simdgroup_index_in_threadgroup]]);
#define instantiate_layer_norm_looped(name, itype) \
template [[host_name("layer_norm_looped" #name)]] [[kernel]] void \
layer_norm_looped<itype>( \
const device itype* x, \
const device itype* w, \
const device itype* b, \
device itype* out, \
constant float& eps, \
constant uint& axis_size, \
constant uint& w_stride, \
constant uint& b_stride, \
uint gid [[thread_position_in_grid]], \
uint lid [[thread_position_in_threadgroup]], \
uint lsize [[threads_per_threadgroup]], \
uint simd_lane_id [[thread_index_in_simdgroup]], \
uint simd_group_id [[simdgroup_index_in_threadgroup]]); \
template [[host_name("vjp_layer_norm_looped" #name)]] [[kernel]] void \
vjp_layer_norm_looped<itype>( \
const device itype* x, \
const device itype* w, \
const device itype* g, \
device itype* gx, \
device itype* gb, \
constant float& eps, \
constant uint& axis_size, \
constant uint& w_stride, \
uint gid [[thread_position_in_grid]], \
uint lid [[thread_position_in_threadgroup]], \
uint lsize [[threads_per_threadgroup]], \
uint simd_lane_id [[thread_index_in_simdgroup]], \
uint simd_group_id [[simdgroup_index_in_threadgroup]]);
#define instantiate_layer_norm(name, itype) \
instantiate_layer_norm_single_row(name, itype) \
instantiate_layer_norm_looped(name, itype)
instantiate_layer_norm(float32, float)
instantiate_layer_norm(float16, half)
instantiate_layer_norm(bfloat16, bfloat16_t) // clang-format on