mirror of
https://github.com/ml-explore/mlx.git
synced 2025-07-18 23:21:16 +08:00
557 lines
19 KiB
Metal
557 lines
19 KiB
Metal
// Copyright © 2024 Apple Inc.
|
|
|
|
#include <metal_common>
|
|
#include <metal_simdgroup>
|
|
|
|
#include "mlx/backend/metal/kernels/bf16.h"
|
|
#include "mlx/backend/metal/kernels/defines.h"
|
|
#include "mlx/backend/metal/kernels/utils.h"
|
|
|
|
using namespace metal;
|
|
|
|
template <typename T, int N_READS = RMS_N_READS>
|
|
[[kernel]] void layer_norm_single_row(
|
|
const device T* x,
|
|
const device T* w,
|
|
const device T* b,
|
|
device T* out,
|
|
constant float& eps,
|
|
constant uint& axis_size,
|
|
constant uint& w_stride,
|
|
constant uint& b_stride,
|
|
uint gid [[threadgroup_position_in_grid]],
|
|
uint lid [[thread_position_in_threadgroup]],
|
|
uint simd_lane_id [[thread_index_in_simdgroup]],
|
|
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
|
|
float sumx = 0;
|
|
float sumx2 = 0;
|
|
float thread_x[N_READS];
|
|
|
|
constexpr int SIMD_SIZE = 32;
|
|
|
|
threadgroup float local_sumx[SIMD_SIZE];
|
|
threadgroup float local_sumx2[SIMD_SIZE];
|
|
threadgroup float local_mean[1];
|
|
threadgroup float local_normalizer[1];
|
|
|
|
x += gid * size_t(axis_size) + lid * N_READS;
|
|
w += w_stride * lid * N_READS;
|
|
b += b_stride * lid * N_READS;
|
|
|
|
if (lid * N_READS + N_READS <= axis_size) {
|
|
for (int i = 0; i < N_READS; i++) {
|
|
thread_x[i] = x[i];
|
|
sumx2 += thread_x[i] * thread_x[i];
|
|
sumx += thread_x[i];
|
|
}
|
|
} else {
|
|
for (int i = 0; i < N_READS; i++) {
|
|
if ((lid * N_READS + i) < axis_size) {
|
|
thread_x[i] = x[i];
|
|
sumx2 += thread_x[i] * thread_x[i];
|
|
sumx += thread_x[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
sumx = simd_sum(sumx);
|
|
sumx2 = simd_sum(sumx2);
|
|
|
|
// Initialize shared memory
|
|
if (simd_group_id == 0) {
|
|
local_sumx[simd_lane_id] = 0;
|
|
local_sumx2[simd_lane_id] = 0;
|
|
}
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
// Write simd accumulations into shared memory
|
|
if (simd_lane_id == 0) {
|
|
local_sumx[simd_group_id] = sumx;
|
|
local_sumx2[simd_group_id] = sumx2;
|
|
}
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
// Accumulate over simd groups
|
|
if (simd_group_id == 0) {
|
|
sumx = simd_sum(local_sumx[simd_lane_id]);
|
|
sumx2 = simd_sum(local_sumx2[simd_lane_id]);
|
|
if (simd_lane_id == 0) {
|
|
float mean = sumx / axis_size;
|
|
float variance = sumx2 / axis_size - mean * mean;
|
|
|
|
local_mean[0] = mean;
|
|
local_normalizer[0] = metal::precise::rsqrt(variance + eps);
|
|
}
|
|
}
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
float mean = local_mean[0];
|
|
float normalizer = local_normalizer[0];
|
|
|
|
// Write the outputs
|
|
out += gid * size_t(axis_size) + lid * N_READS;
|
|
if (lid * N_READS + N_READS <= axis_size) {
|
|
for (int i = 0; i < N_READS; i++) {
|
|
thread_x[i] = (thread_x[i] - mean) * normalizer;
|
|
out[i] = w[w_stride * i] * static_cast<T>(thread_x[i]) + b[b_stride * i];
|
|
}
|
|
} else {
|
|
for (int i = 0; i < N_READS; i++) {
|
|
if ((lid * N_READS + i) < axis_size) {
|
|
thread_x[i] = (thread_x[i] - mean) * normalizer;
|
|
out[i] =
|
|
w[w_stride * i] * static_cast<T>(thread_x[i]) + b[b_stride * i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T, int N_READS = RMS_N_READS>
|
|
[[kernel]] void layer_norm_looped(
|
|
const device T* x,
|
|
const device T* w,
|
|
const device T* b,
|
|
device T* out,
|
|
constant float& eps,
|
|
constant uint& axis_size,
|
|
constant uint& w_stride,
|
|
constant uint& b_stride,
|
|
uint gid [[threadgroup_position_in_grid]],
|
|
uint lid [[thread_position_in_threadgroup]],
|
|
uint lsize [[threads_per_threadgroup]],
|
|
uint simd_lane_id [[thread_index_in_simdgroup]],
|
|
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
|
|
float sumx = 0;
|
|
float sumx2 = 0;
|
|
|
|
constexpr int SIMD_SIZE = 32;
|
|
|
|
threadgroup float local_sumx[SIMD_SIZE];
|
|
threadgroup float local_sumx2[SIMD_SIZE];
|
|
threadgroup float local_mean[1];
|
|
threadgroup float local_normalizer[1];
|
|
|
|
x += gid * size_t(axis_size) + lid * N_READS;
|
|
w += w_stride * lid * N_READS;
|
|
b += b_stride * lid * N_READS;
|
|
|
|
for (uint r = 0; r < axis_size; r += lsize * N_READS) {
|
|
if (r + lid * N_READS + N_READS <= axis_size) {
|
|
for (int i = 0; i < N_READS; i++) {
|
|
float xi = x[i + r];
|
|
sumx2 += xi * xi;
|
|
sumx += xi;
|
|
}
|
|
} else {
|
|
for (int i = 0; i < N_READS; i++) {
|
|
if ((r + lid * N_READS + i) < axis_size) {
|
|
float xi = x[i + r];
|
|
sumx2 += xi * xi;
|
|
sumx += xi;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
sumx = simd_sum(sumx);
|
|
sumx2 = simd_sum(sumx2);
|
|
|
|
// Initialize shared memory
|
|
if (simd_group_id == 0) {
|
|
local_sumx[simd_lane_id] = 0;
|
|
local_sumx2[simd_lane_id] = 0;
|
|
}
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
// Write simd accumulations into shared memory
|
|
if (simd_lane_id == 0) {
|
|
local_sumx[simd_group_id] = sumx;
|
|
local_sumx2[simd_group_id] = sumx2;
|
|
}
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
// Accumulate over simd groups
|
|
if (simd_group_id == 0) {
|
|
sumx = simd_sum(local_sumx[simd_lane_id]);
|
|
sumx2 = simd_sum(local_sumx2[simd_lane_id]);
|
|
if (simd_lane_id == 0) {
|
|
float mean = sumx / axis_size;
|
|
float variance = sumx2 / axis_size - mean * mean;
|
|
|
|
local_mean[0] = mean;
|
|
local_normalizer[0] = metal::precise::rsqrt(variance + eps);
|
|
}
|
|
}
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
float mean = local_mean[0];
|
|
float normalizer = local_normalizer[0];
|
|
|
|
// Write the outputs
|
|
out += gid * size_t(axis_size) + lid * N_READS;
|
|
for (uint r = 0; r < axis_size; r += lsize * N_READS) {
|
|
if (r + lid * N_READS + N_READS <= axis_size) {
|
|
for (int i = 0; i < N_READS; i++) {
|
|
float xi = (x[r + i] - mean) * normalizer;
|
|
out[r + i] =
|
|
w[w_stride * (i + r)] * static_cast<T>(xi) + b[b_stride * (i + r)];
|
|
}
|
|
} else {
|
|
for (int i = 0; i < N_READS; i++) {
|
|
if ((r + lid * N_READS + i) < axis_size) {
|
|
float xi = (x[r + i] - mean) * normalizer;
|
|
out[r + i] = w[w_stride * (i + r)] * static_cast<T>(xi) +
|
|
b[b_stride * (i + r)];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T, int N_READS = RMS_N_READS>
|
|
[[kernel]] void vjp_layer_norm_single_row(
|
|
const device T* x,
|
|
const device T* w,
|
|
const device T* g,
|
|
device T* gx,
|
|
device T* gw,
|
|
constant float& eps,
|
|
constant uint& axis_size,
|
|
constant uint& w_stride,
|
|
uint gid [[threadgroup_position_in_grid]],
|
|
uint lid [[thread_position_in_threadgroup]],
|
|
uint simd_lane_id [[thread_index_in_simdgroup]],
|
|
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
|
|
// Advance the input pointers
|
|
x += gid * size_t(axis_size) + lid * N_READS;
|
|
g += gid * size_t(axis_size) + lid * N_READS;
|
|
w += w_stride * lid * N_READS;
|
|
|
|
// Allocate registers for the computation and accumulators
|
|
float thread_x[N_READS];
|
|
float thread_w[N_READS];
|
|
float thread_g[N_READS];
|
|
float sumx = 0;
|
|
float sumx2 = 0;
|
|
float sumwg = 0;
|
|
float sumwgx = 0;
|
|
|
|
constexpr int SIMD_SIZE = 32;
|
|
|
|
threadgroup float local_sumx[SIMD_SIZE];
|
|
threadgroup float local_sumx2[SIMD_SIZE];
|
|
threadgroup float local_sumwg[SIMD_SIZE];
|
|
threadgroup float local_sumwgx[SIMD_SIZE];
|
|
threadgroup float local_mean[1];
|
|
threadgroup float local_normalizer[1];
|
|
threadgroup float local_meanwg[1];
|
|
threadgroup float local_meanwgx[1];
|
|
|
|
if (lid * N_READS + N_READS <= axis_size) {
|
|
for (int i = 0; i < N_READS; i++) {
|
|
thread_x[i] = x[i];
|
|
thread_w[i] = w[i * w_stride];
|
|
thread_g[i] = g[i];
|
|
float wg = thread_w[i] * thread_g[i];
|
|
sumx += thread_x[i];
|
|
sumx2 += thread_x[i] * thread_x[i];
|
|
sumwg += wg;
|
|
sumwgx += wg * thread_x[i];
|
|
}
|
|
} else {
|
|
for (int i = 0; i < N_READS; i++) {
|
|
if ((lid * N_READS + i) < axis_size) {
|
|
thread_x[i] = x[i];
|
|
thread_w[i] = w[i * w_stride];
|
|
thread_g[i] = g[i];
|
|
float wg = thread_w[i] * thread_g[i];
|
|
sumx += thread_x[i];
|
|
sumx2 += thread_x[i] * thread_x[i];
|
|
sumwg += wg;
|
|
sumwgx += wg * thread_x[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
sumx = simd_sum(sumx);
|
|
sumx2 = simd_sum(sumx2);
|
|
sumwg = simd_sum(sumwg);
|
|
sumwgx = simd_sum(sumwgx);
|
|
|
|
// Initialize shared memory
|
|
if (simd_group_id == 0) {
|
|
local_sumx[simd_lane_id] = 0;
|
|
local_sumx2[simd_lane_id] = 0;
|
|
local_sumwg[simd_lane_id] = 0;
|
|
local_sumwgx[simd_lane_id] = 0;
|
|
}
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
// Write simd accumulations into shared memory
|
|
if (simd_lane_id == 0) {
|
|
local_sumx[simd_group_id] = sumx;
|
|
local_sumx2[simd_group_id] = sumx2;
|
|
local_sumwg[simd_group_id] = sumwg;
|
|
local_sumwgx[simd_group_id] = sumwgx;
|
|
}
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
// Accumulate over simd groups
|
|
if (simd_group_id == 0) {
|
|
sumx = simd_sum(local_sumx[simd_lane_id]);
|
|
sumx2 = simd_sum(local_sumx2[simd_lane_id]);
|
|
sumwg = simd_sum(local_sumwg[simd_lane_id]);
|
|
sumwgx = simd_sum(local_sumwgx[simd_lane_id]);
|
|
if (simd_lane_id == 0) {
|
|
float mean = sumx / axis_size;
|
|
float variance = sumx2 / axis_size - mean * mean;
|
|
|
|
local_mean[0] = mean;
|
|
local_normalizer[0] = metal::precise::rsqrt(variance + eps);
|
|
local_meanwg[0] = sumwg / axis_size;
|
|
local_meanwgx[0] = sumwgx / axis_size;
|
|
}
|
|
}
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
float mean = local_mean[0];
|
|
float normalizer = local_normalizer[0];
|
|
float meanwg = local_meanwg[0];
|
|
float meanwgxc = local_meanwgx[0] - meanwg * mean;
|
|
float normalizer2 = normalizer * normalizer;
|
|
|
|
// Write the outputs
|
|
gx += gid * size_t(axis_size) + lid * N_READS;
|
|
gw += gid * size_t(axis_size) + lid * N_READS;
|
|
if (lid * N_READS + N_READS <= axis_size) {
|
|
for (int i = 0; i < N_READS; i++) {
|
|
thread_x[i] = (thread_x[i] - mean) * normalizer;
|
|
gx[i] = static_cast<T>(
|
|
normalizer * (thread_w[i] * thread_g[i] - meanwg) -
|
|
thread_x[i] * meanwgxc * normalizer2);
|
|
gw[i] = static_cast<T>(thread_g[i] * thread_x[i]);
|
|
}
|
|
} else {
|
|
for (int i = 0; i < N_READS; i++) {
|
|
if ((lid * N_READS + i) < axis_size) {
|
|
thread_x[i] = (thread_x[i] - mean) * normalizer;
|
|
gx[i] = static_cast<T>(
|
|
normalizer * (thread_w[i] * thread_g[i] - meanwg) -
|
|
thread_x[i] * meanwgxc * normalizer2);
|
|
gw[i] = static_cast<T>(thread_g[i] * thread_x[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T, int N_READS = RMS_N_READS>
|
|
[[kernel]] void vjp_layer_norm_looped(
|
|
const device T* x,
|
|
const device T* w,
|
|
const device T* g,
|
|
device T* gx,
|
|
device T* gw,
|
|
constant float& eps,
|
|
constant uint& axis_size,
|
|
constant uint& w_stride,
|
|
uint gid [[threadgroup_position_in_grid]],
|
|
uint lid [[thread_position_in_threadgroup]],
|
|
uint lsize [[threads_per_threadgroup]],
|
|
uint simd_lane_id [[thread_index_in_simdgroup]],
|
|
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
|
|
// Advance the input pointers
|
|
x += gid * size_t(axis_size) + lid * N_READS;
|
|
g += gid * size_t(axis_size) + lid * N_READS;
|
|
w += w_stride * lid * N_READS;
|
|
|
|
// Allocate registers for the accumulators
|
|
float sumx = 0;
|
|
float sumx2 = 0;
|
|
float sumwg = 0;
|
|
float sumwgx = 0;
|
|
|
|
constexpr int SIMD_SIZE = 32;
|
|
|
|
threadgroup float local_sumx[SIMD_SIZE];
|
|
threadgroup float local_sumx2[SIMD_SIZE];
|
|
threadgroup float local_sumwg[SIMD_SIZE];
|
|
threadgroup float local_sumwgx[SIMD_SIZE];
|
|
threadgroup float local_mean[1];
|
|
threadgroup float local_normalizer[1];
|
|
threadgroup float local_meanwg[1];
|
|
threadgroup float local_meanwgx[1];
|
|
|
|
for (uint r = 0; r < axis_size; r += lsize * N_READS) {
|
|
if (r + lid * N_READS + N_READS <= axis_size) {
|
|
for (int i = 0; i < N_READS; i++) {
|
|
float xi = x[i + r];
|
|
float wi = w[(i + r) * w_stride];
|
|
float gi = g[i + r];
|
|
float wg = wi * gi;
|
|
sumx += xi;
|
|
sumx2 += xi * xi;
|
|
sumwg += wg;
|
|
sumwgx += wg * xi;
|
|
}
|
|
} else {
|
|
for (int i = 0; i < N_READS; i++) {
|
|
if ((r + lid * N_READS + i) < axis_size) {
|
|
float xi = x[i + r];
|
|
float wi = w[(i + r) * w_stride];
|
|
float gi = g[i + r];
|
|
float wg = wi * gi;
|
|
sumx += xi;
|
|
sumx2 += xi * xi;
|
|
sumwg += wg;
|
|
sumwgx += wg * xi;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
sumx = simd_sum(sumx);
|
|
sumx2 = simd_sum(sumx2);
|
|
sumwg = simd_sum(sumwg);
|
|
sumwgx = simd_sum(sumwgx);
|
|
|
|
// Initialize shared memory
|
|
if (simd_group_id == 0) {
|
|
local_sumx[simd_lane_id] = 0;
|
|
local_sumx2[simd_lane_id] = 0;
|
|
local_sumwg[simd_lane_id] = 0;
|
|
local_sumwgx[simd_lane_id] = 0;
|
|
}
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
// Write simd accumulations into shared memory
|
|
if (simd_lane_id == 0) {
|
|
local_sumx[simd_group_id] = sumx;
|
|
local_sumx2[simd_group_id] = sumx2;
|
|
local_sumwg[simd_group_id] = sumwg;
|
|
local_sumwgx[simd_group_id] = sumwgx;
|
|
}
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
// Accumulate over simd groups
|
|
if (simd_group_id == 0) {
|
|
sumx = simd_sum(local_sumx[simd_lane_id]);
|
|
sumx2 = simd_sum(local_sumx2[simd_lane_id]);
|
|
sumwg = simd_sum(local_sumwg[simd_lane_id]);
|
|
sumwgx = simd_sum(local_sumwgx[simd_lane_id]);
|
|
if (simd_lane_id == 0) {
|
|
float mean = sumx / axis_size;
|
|
float variance = sumx2 / axis_size - mean * mean;
|
|
|
|
local_mean[0] = mean;
|
|
local_normalizer[0] = metal::precise::rsqrt(variance + eps);
|
|
local_meanwg[0] = sumwg / axis_size;
|
|
local_meanwgx[0] = sumwgx / axis_size;
|
|
}
|
|
}
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
float mean = local_mean[0];
|
|
float normalizer = local_normalizer[0];
|
|
float meanwg = local_meanwg[0];
|
|
float meanwgxc = local_meanwgx[0] - meanwg * mean;
|
|
float normalizer2 = normalizer * normalizer;
|
|
|
|
// Write the outputs
|
|
gx += gid * size_t(axis_size) + lid * N_READS;
|
|
gw += gid * size_t(axis_size) + lid * N_READS;
|
|
for (uint r = 0; r < axis_size; r += lsize * N_READS) {
|
|
if (r + lid * N_READS + N_READS <= axis_size) {
|
|
for (int i = 0; i < N_READS; i++) {
|
|
float xi = (x[i + r] - mean) * normalizer;
|
|
float wi = w[(i + r) * w_stride];
|
|
float gi = g[i + r];
|
|
gx[i + r] = static_cast<T>(
|
|
normalizer * (wi * gi - meanwg) - xi * meanwgxc * normalizer2);
|
|
gw[i + r] = static_cast<T>(gi * xi);
|
|
}
|
|
} else {
|
|
for (int i = 0; i < N_READS; i++) {
|
|
if ((r + lid * N_READS + i) < axis_size) {
|
|
float xi = (x[i + r] - mean) * normalizer;
|
|
float wi = w[(i + r) * w_stride];
|
|
float gi = g[i + r];
|
|
gx[i + r] = static_cast<T>(
|
|
normalizer * (wi * gi - meanwg) - xi * meanwgxc * normalizer2);
|
|
gw[i + r] = static_cast<T>(gi * xi);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// clang-format off
|
|
#define instantiate_layer_norm_single_row(name, itype) \
|
|
template [[host_name("layer_norm" #name)]] [[kernel]] void \
|
|
layer_norm_single_row<itype>( \
|
|
const device itype* x, \
|
|
const device itype* w, \
|
|
const device itype* b, \
|
|
device itype* out, \
|
|
constant float& eps, \
|
|
constant uint& axis_size, \
|
|
constant uint& w_stride, \
|
|
constant uint& b_stride, \
|
|
uint gid [[thread_position_in_grid]], \
|
|
uint lid [[thread_position_in_threadgroup]], \
|
|
uint simd_lane_id [[thread_index_in_simdgroup]], \
|
|
uint simd_group_id [[simdgroup_index_in_threadgroup]]); \
|
|
template [[host_name("vjp_layer_norm" #name)]] [[kernel]] void \
|
|
vjp_layer_norm_single_row<itype>( \
|
|
const device itype* x, \
|
|
const device itype* w, \
|
|
const device itype* g, \
|
|
device itype* gx, \
|
|
device itype* gw, \
|
|
constant float& eps, \
|
|
constant uint& axis_size, \
|
|
constant uint& w_stride, \
|
|
uint gid [[thread_position_in_grid]], \
|
|
uint lid [[thread_position_in_threadgroup]], \
|
|
uint simd_lane_id [[thread_index_in_simdgroup]], \
|
|
uint simd_group_id [[simdgroup_index_in_threadgroup]]);
|
|
|
|
#define instantiate_layer_norm_looped(name, itype) \
|
|
template [[host_name("layer_norm_looped" #name)]] [[kernel]] void \
|
|
layer_norm_looped<itype>( \
|
|
const device itype* x, \
|
|
const device itype* w, \
|
|
const device itype* b, \
|
|
device itype* out, \
|
|
constant float& eps, \
|
|
constant uint& axis_size, \
|
|
constant uint& w_stride, \
|
|
constant uint& b_stride, \
|
|
uint gid [[thread_position_in_grid]], \
|
|
uint lid [[thread_position_in_threadgroup]], \
|
|
uint lsize [[threads_per_threadgroup]], \
|
|
uint simd_lane_id [[thread_index_in_simdgroup]], \
|
|
uint simd_group_id [[simdgroup_index_in_threadgroup]]); \
|
|
template [[host_name("vjp_layer_norm_looped" #name)]] [[kernel]] void \
|
|
vjp_layer_norm_looped<itype>( \
|
|
const device itype* x, \
|
|
const device itype* w, \
|
|
const device itype* g, \
|
|
device itype* gx, \
|
|
device itype* gb, \
|
|
constant float& eps, \
|
|
constant uint& axis_size, \
|
|
constant uint& w_stride, \
|
|
uint gid [[thread_position_in_grid]], \
|
|
uint lid [[thread_position_in_threadgroup]], \
|
|
uint lsize [[threads_per_threadgroup]], \
|
|
uint simd_lane_id [[thread_index_in_simdgroup]], \
|
|
uint simd_group_id [[simdgroup_index_in_threadgroup]]);
|
|
|
|
#define instantiate_layer_norm(name, itype) \
|
|
instantiate_layer_norm_single_row(name, itype) \
|
|
instantiate_layer_norm_looped(name, itype)
|
|
|
|
instantiate_layer_norm(float32, float)
|
|
instantiate_layer_norm(float16, half)
|
|
instantiate_layer_norm(bfloat16, bfloat16_t) // clang-format on
|