mlx/mlx/linalg.cpp
2024-05-17 12:31:59 -07:00

296 lines
8.5 KiB
C++

// Copyright © 2023 Apple Inc.
#include <numeric>
#include <ostream>
#include <vector>
#include "mlx/linalg.h"
#include "mlx/primitives.h"
#include "mlx/utils.h"
namespace mlx::core::linalg {
Dtype at_least_float(const Dtype& d) {
return issubdtype(d, inexact) ? d : promote_types(d, float32);
}
inline array l2_norm(
const array& a,
const std::vector<int>& axis,
bool keepdims,
StreamOrDevice s) {
if (issubdtype(a.dtype(), complexfloating)) {
return sqrt(sum(abs(a, s) * abs(a, s), axis, keepdims, s), s);
} else {
return sqrt(sum(square(a, s), axis, keepdims, s), s);
}
}
inline array vector_norm(
const array& a,
const double ord,
const std::vector<int>& axis,
bool keepdims,
StreamOrDevice s) {
auto dtype = at_least_float(a.dtype());
if (ord == 0.0) {
return astype(sum(not_equal(a, array(0), s), axis, keepdims, s), dtype, s);
} else if (ord == 1.0) {
return astype(sum(abs(a, s), axis, keepdims, s), dtype, s);
} else if (ord == 2.0) {
return l2_norm(a, axis, keepdims, s);
} else if (ord == std::numeric_limits<double>::infinity()) {
return astype(max(abs(a, s), axis, keepdims, s), dtype, s);
} else if (ord == -std::numeric_limits<double>::infinity()) {
return astype(min(abs(a, s), axis, keepdims, s), dtype, s);
} else {
return power(
sum(power(abs(a, s), array(ord, dtype), s), axis, keepdims, s),
array(1.0 / ord, dtype),
s);
}
}
inline array matrix_norm(
const array& a,
const double ord,
const std::vector<int>& axis,
bool keepdims,
StreamOrDevice s) {
auto dtype = at_least_float(a.dtype());
auto row_axis = axis[0];
auto col_axis = axis[1];
if (ord == -1.0) {
col_axis -= (!keepdims && col_axis > row_axis && col_axis > 0);
return astype(
min(sum(abs(a, s), row_axis, keepdims, s), col_axis, keepdims, s),
dtype,
s);
} else if (ord == 1.0) {
col_axis -= (!keepdims && col_axis > row_axis && col_axis > 0);
return astype(
max(sum(abs(a, s), row_axis, keepdims, s), col_axis, keepdims, s),
dtype,
s);
} else if (ord == std::numeric_limits<double>::infinity()) {
row_axis -= (!keepdims && row_axis > col_axis && row_axis > 0);
return astype(
max(sum(abs(a, s), col_axis, keepdims, s), row_axis, keepdims, s),
dtype,
s);
} else if (ord == -std::numeric_limits<double>::infinity()) {
row_axis -= (!keepdims && row_axis > col_axis && row_axis > 0);
return astype(
min(sum(abs(a, s), col_axis, keepdims, s), row_axis, keepdims, s),
dtype,
s);
} else if (ord == 2.0 || ord == -2.0) {
throw std::runtime_error(
"[linalg::norm] Singular value norms are not implemented.");
} else {
std::ostringstream msg;
msg << "[linalg::norm] Invalid ord " << ord << " for matrix norm.";
throw std::invalid_argument(msg.str());
}
}
inline array matrix_norm(
const array& a,
const std::string& ord,
const std::vector<int>& axis,
bool keepdims,
StreamOrDevice s) {
if (ord == "f" || ord == "fro") {
return l2_norm(a, axis, keepdims, s);
} else if (ord == "nuc") {
throw std::runtime_error(
"[linalg::norm] Nuclear norm not yet implemented.");
} else {
std::ostringstream msg;
msg << "[linalg::norm] Invalid ord value '" << ord << "' for matrix norm.";
throw std::invalid_argument(msg.str());
}
}
array norm(
const array& a,
const std::optional<std::vector<int>>& axis /* = std::nullopt */,
bool keepdims /* = false */,
StreamOrDevice s /* = {} */) {
if (!axis) {
return norm(flatten(a, s), std::vector<int>{0}, keepdims, s);
}
if (axis.value().size() > 2) {
throw std::invalid_argument(
"[linalg::norm] Received too many axes for norm.");
}
return l2_norm(a, axis.value(), keepdims, s);
}
array norm(
const array& a,
const double ord,
const std::optional<std::vector<int>>& axis /* = std::nullopt */,
bool keepdims /* = false */,
StreamOrDevice s /* = {} */) {
std::vector<int> ax;
if (!axis) {
ax.resize(a.ndim());
std::iota(ax.begin(), ax.end(), 0);
} else {
ax = axis.value();
}
if (ax.size() == 1) {
return vector_norm(a, ord, ax, keepdims, s);
} else if (ax.size() == 2) {
return matrix_norm(a, ord, ax, keepdims, s);
} else {
throw std::invalid_argument(
"[linalg::norm] Received too many axes for norm.");
}
}
array norm(
const array& a,
const std::string& ord,
const std::optional<std::vector<int>>& axis /* = std::nullopt */,
bool keepdims /* = false */,
StreamOrDevice s /* = {} */) {
std::vector<int> ax;
if (!axis) {
ax.resize(a.ndim());
std::iota(ax.begin(), ax.end(), 0);
} else {
ax = axis.value();
}
if (ax.size() != 2) {
std::ostringstream msg;
msg << "[linalg::norm] Norm '" << ord << "' only supported for matrices,"
<< " but received " << ax.size() << " axis/axes.";
throw std::invalid_argument(msg.str());
}
return matrix_norm(a, ord, ax, keepdims, s);
}
std::pair<array, array> qr(const array& a, StreamOrDevice s /* = {} */) {
if (a.dtype() != float32) {
std::ostringstream msg;
msg << "[linalg::qr] Arrays must type float32. Received array "
<< "with type " << a.dtype() << ".";
throw std::invalid_argument(msg.str());
}
if (a.ndim() < 2) {
std::ostringstream msg;
msg << "[linalg::qr] Arrays must have >= 2 dimensions. Received array "
"with "
<< a.ndim() << " dimensions.";
throw std::invalid_argument(msg.str());
}
if (a.shape(-1) != a.shape(-2)) {
throw std::invalid_argument(
"[linalg::qr] Support for non-square matrices NYI.");
}
auto out = array::make_arrays(
{a.shape(), a.shape()},
{a.dtype(), a.dtype()},
std::make_shared<QRF>(to_stream(s)),
{astype(a, a.dtype(), s)});
return std::make_pair(out[0], out[1]);
}
std::vector<array> svd(const array& a, StreamOrDevice s /* = {} */) {
if (a.dtype() != float32) {
std::ostringstream msg;
msg << "[linalg::svd] Input array must have type float32. Received array "
<< "with type " << a.dtype() << ".";
throw std::invalid_argument(msg.str());
}
if (a.ndim() < 2) {
std::ostringstream msg;
msg << "[linalg::svd] Input array must have >= 2 dimensions. Received array "
"with "
<< a.ndim() << " dimensions.";
throw std::invalid_argument(msg.str());
}
const auto m = a.shape(-2);
const auto n = a.shape(-1);
const auto rank = a.ndim();
std::vector<int> u_shape = a.shape();
u_shape[rank - 2] = m;
u_shape[rank - 1] = m;
std::vector<int> s_shape = a.shape();
s_shape.pop_back();
s_shape[rank - 2] = std::min(m, n);
std::vector<int> vt_shape = a.shape();
vt_shape[rank - 2] = n;
vt_shape[rank - 1] = n;
return array::make_arrays(
{u_shape, s_shape, vt_shape},
{a.dtype(), a.dtype(), a.dtype()},
std::make_shared<SVD>(to_stream(s)),
{a});
}
array inv(const array& a, StreamOrDevice s /* = {} */) {
if (a.dtype() != float32) {
std::ostringstream msg;
msg << "[linalg::inv] Arrays must type float32. Received array "
<< "with type " << a.dtype() << ".";
throw std::invalid_argument(msg.str());
}
if (a.ndim() < 2) {
std::ostringstream msg;
msg << "[linalg::inv] Arrays must have >= 2 dimensions. Received array "
"with "
<< a.ndim() << " dimensions.";
throw std::invalid_argument(msg.str());
}
if (a.shape(-1) != a.shape(-2)) {
throw std::invalid_argument(
"[linalg::inv] Inverses are only defined for square matrices.");
}
return array(
a.shape(), a.dtype(), std::make_shared<Inverse>(to_stream(s)), {a});
}
array cholesky(
const array& a,
bool upper /* = false */,
StreamOrDevice s /* = {} */) {
if (a.dtype() != float32) {
std::ostringstream msg;
msg << "[linalg::cholesky] Arrays must type float32. Received array "
<< "with type " << a.dtype() << ".";
throw std::invalid_argument(msg.str());
}
if (a.ndim() < 2) {
std::ostringstream msg;
msg << "[linalg::cholesky] Arrays must have >= 2 dimensions. Received array "
"with "
<< a.ndim() << " dimensions.";
throw std::invalid_argument(msg.str());
}
if (a.shape(-1) != a.shape(-2)) {
throw std::invalid_argument(
"[linalg::cholesky] Cholesky decomposition is only defined for square "
"matrices.");
}
return array(
a.shape(),
a.dtype(),
std::make_shared<Cholesky>(to_stream(s), upper),
{a});
}
} // namespace mlx::core::linalg