mlx/tests/metal_thread_safety_tests.cpp
2025-05-07 11:59:54 -07:00

250 lines
9.0 KiB
C++

#include "doctest/doctest.h"
#include "mlx/mlx.h"
#include "mlx/backend/metal/device.h"
#include <thread>
#include <vector>
#include <atomic>
#include <chrono>
#include <mutex>
#include <iostream>
using namespace mlx::core;
// Helper function to run operations across multiple threads with pre-created streams
void run_in_threads(int num_threads, const std::function<void(int, Stream)>& func,
const std::vector<Stream>& streams) {
std::vector<std::thread> threads;
threads.reserve(num_threads);
for (int i = 0; i < num_threads; ++i) {
threads.emplace_back(func, i, streams[i % streams.size()]);
}
for (auto& t : threads) {
if (t.joinable()) {
t.join();
}
}
}
// Helper function for tasks not requiring streams (e.g., using default stream)
void run_in_threads_default(int num_threads, const std::function<void(int)>& func) {
std::vector<std::thread> threads;
threads.reserve(num_threads);
for (int i = 0; i < num_threads; ++i) {
threads.emplace_back(func, i);
}
for (auto& t : threads) {
if (t.joinable()) {
t.join();
}
}
}
// Thread-safe result collection
struct TestResults {
std::mutex mutex;
std::vector<bool> shape_checks;
std::vector<bool> availability_checks;
std::vector<bool> value_checks;
std::vector<float> expected_values;
std::vector<float> actual_values;
void record_result(bool shape_ok, bool available_ok, bool value_ok,
float expected, float actual) {
std::lock_guard<std::mutex> lock(mutex);
shape_checks.push_back(shape_ok);
availability_checks.push_back(available_ok);
value_checks.push_back(value_ok);
expected_values.push_back(expected);
actual_values.push_back(actual);
}
};
TEST_CASE("test metal concurrent eval operations") {
Device D_GPU = Device::gpu;
const int num_threads = std::thread::hardware_concurrency() > 0 ? std::thread::hardware_concurrency() : 8;
const int ops_per_thread = 10;
const int array_size = 32;
std::atomic<int> completed_ops{0};
TestResults results;
// Pre-create streams to avoid concurrent stream creation
std::vector<Stream> streams;
for (int i = 0; i < num_threads; ++i) {
streams.push_back(new_stream(D_GPU));
}
synchronize(); // Ensure stream creation is complete
auto task = [&](int thread_id, Stream s) {
try {
for (int i = 0; i < ops_per_thread; ++i) {
float val1 = static_cast<float>(thread_id * ops_per_thread + i + 1);
float val2 = val1 * 2.0f;
auto x = full({array_size, array_size}, val1, s);
auto y = full({array_size, array_size}, val2, s);
auto z = add(x, y);
eval(z);
bool shape_ok = (z.shape() == Shape{array_size, array_size});
bool available_ok = z.is_available();
// Get a value from the array
int mid = array_size/2;
auto sample = slice(z, {mid, mid}, {mid+1, mid+1});
float actual = sample.item<float>();
float expected = val1 + val2;
bool values_match = (std::abs(actual - expected) < 1e-5);
results.record_result(shape_ok, available_ok, values_match, expected, actual);
if (shape_ok && available_ok && values_match) {
completed_ops++;
}
}
} catch (const std::exception& e) {
std::cerr << "Thread " << thread_id << " exception: " << e.what() << std::endl;
}
};
// Run the threads with pre-created streams
CHECK_NOTHROW(run_in_threads(num_threads, task, streams));
// Check all results outside of threads
for (size_t i = 0; i < results.shape_checks.size(); ++i) {
CAPTURE(i); // Help identify which operation failed
CHECK(results.shape_checks[i]);
CHECK(results.availability_checks[i]);
CHECK(results.value_checks[i]);
if (!results.value_checks[i]) {
CAPTURE(results.expected_values[i]);
CAPTURE(results.actual_values[i]);
}
}
// Verify all operations completed successfully
CHECK_EQ(completed_ops.load(), num_threads * ops_per_thread);
}
TEST_CASE("test metal high contention on default stream eval") {
Device D_GPU = Device::gpu;
const int num_threads = std::thread::hardware_concurrency() > 0 ? std::thread::hardware_concurrency() : 8;
const int ops_per_thread = 5;
const int array_size = 16;
Stream default_gpu_stream = default_stream(D_GPU);
std::atomic<int> successful_ops{0};
std::vector<std::string> thread_errors;
std::mutex errors_mutex;
TestResults results;
auto task = [&](int thread_id) {
try {
for (int i = 0; i < ops_per_thread; ++i) {
float val = static_cast<float>(thread_id * 100 + i + 1);
auto x = full({array_size, array_size}, val, default_gpu_stream);
auto y = full({array_size, array_size}, val * 0.5f, default_gpu_stream);
auto z = multiply(x, y);
eval(z);
// Sample a value
auto sample = slice(z, {0, 0}, {1, 1});
float actual = sample.item<float>();
float expected = val * val * 0.5f;
bool shape_ok = (z.shape() == Shape{array_size, array_size});
bool available_ok = z.is_available();
bool values_match = (std::abs(actual - expected) < 1e-5);
results.record_result(shape_ok, available_ok, values_match, expected, actual);
if (shape_ok && available_ok && values_match) {
successful_ops++;
}
}
} catch (const std::exception& e) {
std::lock_guard<std::mutex> lock(errors_mutex);
thread_errors.push_back(std::string("Thread ") +
std::to_string(thread_id) +
" exception: " + e.what());
}
};
// Use the default helper for this test since it uses the default stream
CHECK_NOTHROW(run_in_threads_default(num_threads, task));
// Check for thread errors
CHECK(thread_errors.empty());
if (!thread_errors.empty()) {
for (const auto& err : thread_errors) {
CAPTURE(err);
}
}
// Check all results
for (size_t i = 0; i < results.shape_checks.size(); ++i) {
CAPTURE(i);
CHECK(results.shape_checks[i]);
CHECK(results.availability_checks[i]);
CHECK(results.value_checks[i]);
if (!results.value_checks[i]) {
CAPTURE(results.expected_values[i]);
CAPTURE(results.actual_values[i]);
}
}
// Verify operation count
CHECK_EQ(successful_ops.load(), num_threads * ops_per_thread);
}
TEST_CASE("test metal concurrent graph eval from different threads") {
Device D_GPU = Device::gpu;
const int num_threads = std::thread::hardware_concurrency() > 0 ? std::thread::hardware_concurrency() : 4; // Keep modest for clarity
const int array_size = 64;
TestResults all_results;
// Pre-create streams
std::vector<Stream> streams;
for (int i = 0; i < num_threads; ++i) {
streams.push_back(new_stream(D_GPU));
}
synchronize();
auto task = [&](int thread_id, Stream s) {
try {
float val1_base = static_cast<float>(thread_id + 1) * 10.0f;
auto x = full({array_size, array_size}, val1_base, s);
auto y = full({array_size, array_size}, val1_base + 1.0f, s);
auto z = add(x, y);
auto w = multiply(z, x);
eval(w);
float expected_val = (val1_base + (val1_base + 1.0f)) * val1_base;
auto sample = slice(w, {0,0}, {1,1});
float actual_val = sample.item<float>();
bool shape_ok = (w.shape() == Shape{array_size, array_size});
bool available_ok = w.is_available();
bool value_ok = (std::abs(actual_val - expected_val) < 1e-4);
all_results.record_result(shape_ok, available_ok, value_ok, expected_val, actual_val);
} catch (const std::exception& e) {
std::cerr << "Thread " << thread_id << " exception in concurrent graph eval: " << e.what() << std::endl;
}
};
CHECK_NOTHROW(run_in_threads(num_threads, task, streams));
CHECK_EQ(all_results.shape_checks.size(), num_threads); // One result per thread
for (size_t i = 0; i < num_threads; ++i) {
CAPTURE(i);
CHECK(all_results.shape_checks[i]);
CHECK(all_results.availability_checks[i]);
CHECK(all_results.value_checks[i]);
if (!all_results.value_checks[i]) {
CAPTURE(all_results.expected_values[i]);
CAPTURE(all_results.actual_values[i]);
}
}
}