mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 01:17:26 +08:00
665 lines
22 KiB
Python
665 lines
22 KiB
Python
# Copyright © 2023-2024 Apple Inc.
|
|
|
|
import gc
|
|
import unittest
|
|
|
|
import mlx.core as mx
|
|
import mlx_tests
|
|
|
|
|
|
class TestVmap(mlx_tests.MLXTestCase):
|
|
def test_basics(self):
|
|
# Can't vmap over scalars
|
|
with self.assertRaises(ValueError):
|
|
mx.vmap(mx.exp)(mx.array(1.0))
|
|
|
|
# Invalid input
|
|
with self.assertRaises(ValueError):
|
|
mx.vmap(mx.exp)("hello")
|
|
|
|
# Invalid axes
|
|
with self.assertRaises(ValueError):
|
|
mx.vmap(mx.exp, in_axes="hello")(mx.array([0, 1]))
|
|
|
|
with self.assertRaises(ValueError):
|
|
mx.vmap(mx.exp, in_axes=2)(mx.array([0, 1]))
|
|
|
|
with self.assertRaises(ValueError):
|
|
mx.vmap(mx.exp, out_axes="hello")(mx.array([0, 1]))
|
|
|
|
with self.assertRaises(ValueError):
|
|
mx.vmap(mx.exp, out_axes=2)(mx.array([0, 1]))
|
|
|
|
def test_unary(self):
|
|
ops = [
|
|
"abs",
|
|
"cos",
|
|
"erf",
|
|
"erfinv",
|
|
"exp",
|
|
"log",
|
|
"log1p",
|
|
"log2",
|
|
"log10",
|
|
"logical_not",
|
|
"negative",
|
|
"reciprocal",
|
|
"rsqrt",
|
|
"sigmoid",
|
|
"sign",
|
|
"sin",
|
|
"sqrt",
|
|
"square",
|
|
"degrees",
|
|
"radians",
|
|
]
|
|
for opname in ops:
|
|
with self.subTest(op=opname):
|
|
op = getattr(mx, opname)
|
|
x = mx.arange(5)
|
|
y = mx.vmap(op)(x)
|
|
self.assertTrue(mx.array_equal(y, op(x), equal_nan=True))
|
|
|
|
x = mx.arange(8).reshape(2, 4)
|
|
y = mx.vmap(op)(x)
|
|
self.assertTrue(mx.array_equal(y, op(x), equal_nan=True))
|
|
|
|
y = mx.vmap(op, in_axes=1, out_axes=1)(x)
|
|
self.assertTrue(mx.array_equal(y, op(x), equal_nan=True))
|
|
|
|
def test_binary(self):
|
|
ops = [
|
|
"add",
|
|
"divide",
|
|
"equal",
|
|
"greater",
|
|
"greater_equal",
|
|
"less",
|
|
"less_equal",
|
|
"logaddexp",
|
|
"maximum",
|
|
"minimum",
|
|
"multiply",
|
|
"power",
|
|
"subtract",
|
|
"logical_or",
|
|
"logical_and",
|
|
]
|
|
for opname in ops:
|
|
with self.subTest(op=opname):
|
|
op = getattr(mx, opname)
|
|
x = mx.random.uniform(shape=(5,))
|
|
y = mx.random.uniform(shape=(5,))
|
|
out = mx.vmap(op)(x, y)
|
|
self.assertTrue(mx.array_equal(out, op(x, y)))
|
|
|
|
x = mx.random.uniform(shape=(2, 4))
|
|
y = mx.random.uniform(shape=(2, 4))
|
|
out = mx.vmap(op)(x, y)
|
|
self.assertTrue(mx.array_equal(out, op(x, y)))
|
|
|
|
out = mx.vmap(op, in_axes=(0, 0), out_axes=0)(x, y)
|
|
self.assertTrue(mx.array_equal(out, op(x, y)))
|
|
|
|
y = mx.random.uniform(shape=(4, 2))
|
|
out = mx.vmap(op, in_axes=(0, 1), out_axes=0)(x, y)
|
|
self.assertTrue(mx.array_equal(out, op(x, y.T)))
|
|
|
|
out = mx.vmap(op, in_axes=(0, 1), out_axes=1)(x, y)
|
|
self.assertTrue(mx.array_equal(out, op(x, y.T).T))
|
|
|
|
def test_tree(self):
|
|
def my_fun(tree):
|
|
return (tree["a"] + tree["b"][0]) * tree["b"][1]
|
|
|
|
tree = {
|
|
"a": mx.random.uniform(shape=(2, 4)),
|
|
"b": (
|
|
mx.random.uniform(shape=(2, 4)),
|
|
mx.random.uniform(shape=(2, 4)),
|
|
),
|
|
}
|
|
out = mx.vmap(my_fun)(tree)
|
|
expected = my_fun(tree)
|
|
self.assertTrue(mx.array_equal(out, my_fun(tree)))
|
|
|
|
with self.assertRaises(ValueError):
|
|
mx.vmap(my_fun, in_axes={"a": 0, "b": ((0, 0), 0)}, out_axes=0)(tree)
|
|
|
|
out = mx.vmap(my_fun, in_axes={"a": 0, "b": 0}, out_axes=0)(tree)
|
|
self.assertTrue(mx.array_equal(out, my_fun(tree)))
|
|
|
|
out = mx.vmap(my_fun, in_axes={"a": 0, "b": (0, 0)}, out_axes=0)(tree)
|
|
self.assertTrue(mx.array_equal(out, my_fun(tree)))
|
|
|
|
tree = {
|
|
"a": mx.random.uniform(shape=(2, 4)),
|
|
"b": (
|
|
mx.random.uniform(shape=(4, 2)),
|
|
mx.random.uniform(shape=(4, 2)),
|
|
),
|
|
}
|
|
out = mx.vmap(my_fun, in_axes={"a": 0, "b": (1, 1)}, out_axes=0)(tree)
|
|
expected = (tree["a"] + tree["b"][0].T) * tree["b"][1].T
|
|
self.assertTrue(mx.array_equal(out, expected))
|
|
|
|
def my_fun(x, y):
|
|
return {"a": x + y, "b": x * y}
|
|
|
|
x = mx.random.uniform(shape=(2, 4))
|
|
y = mx.random.uniform(shape=(2, 4))
|
|
out = mx.vmap(my_fun, in_axes=0, out_axes=0)(x, y)
|
|
expected = my_fun(x, y)
|
|
self.assertTrue(mx.array_equal(out["a"], expected["a"]))
|
|
self.assertTrue(mx.array_equal(out["b"], expected["b"]))
|
|
|
|
with self.assertRaises(ValueError):
|
|
mx.vmap(my_fun, in_axes=0, out_axes=(0, 1))(x, y)
|
|
|
|
with self.assertRaises(ValueError):
|
|
mx.vmap(my_fun, in_axes=0, out_axes={"a": 0, "c": 1})(x, y)
|
|
|
|
out = mx.vmap(my_fun, in_axes=0, out_axes={"a": 1, "b": 0})(x, y)
|
|
expected = my_fun(x, y)
|
|
self.assertTrue(mx.array_equal(out["a"].T, expected["a"]))
|
|
self.assertTrue(mx.array_equal(out["b"], expected["b"]))
|
|
|
|
def test_vmap_indexing(self):
|
|
x = mx.arange(16).reshape(2, 2, 2, 2)
|
|
inds = mx.array([[0, 1, 0], [1, 1, 0]])
|
|
|
|
out = mx.vmap(lambda x, y: x[y], in_axes=(0, 0))(x, inds)
|
|
expected = mx.array(
|
|
[
|
|
[[[0, 1], [2, 3]], [[4, 5], [6, 7]], [[0, 1], [2, 3]]],
|
|
[[[12, 13], [14, 15]], [[12, 13], [14, 15]], [[8, 9], [10, 11]]],
|
|
]
|
|
)
|
|
self.assertTrue(mx.array_equal(out, expected))
|
|
|
|
out = mx.vmap(lambda x, y: x[y], in_axes=(0, None))(x, inds)
|
|
expected = mx.array(
|
|
[
|
|
[
|
|
[[[0, 1], [2, 3]], [[4, 5], [6, 7]], [[0, 1], [2, 3]]],
|
|
[[[4, 5], [6, 7]], [[4, 5], [6, 7]], [[0, 1], [2, 3]]],
|
|
],
|
|
[
|
|
[[[8, 9], [10, 11]], [[12, 13], [14, 15]], [[8, 9], [10, 11]]],
|
|
[[[12, 13], [14, 15]], [[12, 13], [14, 15]], [[8, 9], [10, 11]]],
|
|
],
|
|
]
|
|
)
|
|
self.assertTrue(mx.array_equal(out, expected))
|
|
|
|
out = mx.vmap(lambda x, y: x[y], in_axes=(None, 0))(x, inds)
|
|
expected = mx.array(
|
|
[
|
|
[
|
|
[[[0, 1], [2, 3]], [[4, 5], [6, 7]]],
|
|
[[[8, 9], [10, 11]], [[12, 13], [14, 15]]],
|
|
[[[0, 1], [2, 3]], [[4, 5], [6, 7]]],
|
|
],
|
|
[
|
|
[[[8, 9], [10, 11]], [[12, 13], [14, 15]]],
|
|
[[[8, 9], [10, 11]], [[12, 13], [14, 15]]],
|
|
[[[0, 1], [2, 3]], [[4, 5], [6, 7]]],
|
|
],
|
|
]
|
|
)
|
|
self.assertTrue(mx.array_equal(out, expected))
|
|
|
|
inds2 = mx.array([[0, 1, 0], [0, 1, 0]])
|
|
out = mx.vmap(lambda x, y, z: x[y, z], in_axes=(None, 0, 0))(x, inds, inds2)
|
|
expected = mx.array(
|
|
[
|
|
[[[0, 1], [2, 3]], [[12, 13], [14, 15]], [[0, 1], [2, 3]]],
|
|
[[[8, 9], [10, 11]], [[12, 13], [14, 15]], [[0, 1], [2, 3]]],
|
|
]
|
|
)
|
|
self.assertTrue(mx.array_equal(out, expected))
|
|
|
|
def test_vmap_reduce(self):
|
|
a = mx.ones((5, 5), mx.int32)
|
|
out = mx.vmap(lambda x: x.sum())(a)
|
|
self.assertTrue(mx.array_equal(out, mx.full((5,), 5)))
|
|
|
|
out = mx.vmap(lambda x: x.sum(keepdims=True))(a)
|
|
self.assertTrue(mx.array_equal(out, mx.full((5, 1), 5)))
|
|
|
|
out = mx.vmap(lambda x: x.sum(axis=0))(a)
|
|
self.assertTrue(mx.array_equal(out, mx.full((5,), 5)))
|
|
|
|
a = mx.ones((5, 3, 2), mx.int32)
|
|
out = mx.vmap(lambda x: x.sum(axis=(0, 1)))(a)
|
|
self.assertTrue(mx.array_equal(out, mx.full((5,), 6)))
|
|
|
|
a = mx.ones((5, 3, 2), mx.int32)
|
|
out = mx.vmap(lambda x: x.sum(axis=(0, 1)), in_axes=(1,))(a)
|
|
self.assertTrue(mx.array_equal(out, mx.full((3,), 10)))
|
|
|
|
a = mx.ones((5, 3, 2), mx.int32)
|
|
out = mx.vmap(lambda x: x.sum(axis=(0, 1)), in_axes=(2,))(a)
|
|
self.assertTrue(mx.array_equal(out, mx.full((2,), 15)))
|
|
|
|
def test_vmap_argreduce(self):
|
|
a = mx.array([[1, 2, 3], [2, 3, 1]])
|
|
out = mx.vmap(lambda x: mx.argmin(x))(a)
|
|
expected = mx.array([0, 2])
|
|
self.assertTrue(mx.array_equal(out, expected))
|
|
|
|
out = mx.vmap(lambda x: mx.argmax(x))(a)
|
|
expected = mx.array([2, 1])
|
|
self.assertTrue(mx.array_equal(out, expected))
|
|
|
|
def test_vmap_mean(self):
|
|
a = mx.arange(8).reshape(2, 4)
|
|
out = mx.vmap(mx.mean)(a)
|
|
expected = mx.mean(a, axis=1)
|
|
self.assertTrue(mx.allclose(out, expected))
|
|
|
|
a = mx.arange(16).reshape(2, 2, 4)
|
|
out = mx.vmap(mx.vmap(mx.mean))(a)
|
|
expected = mx.mean(a, axis=2)
|
|
self.assertTrue(mx.allclose(out, expected))
|
|
|
|
def test_mismatch_input_sizes(self):
|
|
a = mx.ones((10, 1))
|
|
b = mx.ones((1, 1, 1, 5))
|
|
|
|
with self.assertRaises(ValueError):
|
|
out = mx.vmap(lambda x, y: x + y)(a, b)
|
|
|
|
b = mx.ones((10, 5))
|
|
with self.assertRaises(ValueError):
|
|
out = mx.vmap(lambda x, y: x + y, in_axes=(0, 1))(a, b)
|
|
|
|
def test_vmap_matmul(self):
|
|
a = mx.random.uniform(shape=(2, 3, 4))
|
|
b = mx.random.uniform(shape=(4, 3))
|
|
|
|
# matmul
|
|
out = mx.vmap(mx.matmul, in_axes=(0, None))(a, b)
|
|
self.assertTrue(mx.allclose(out, a @ b))
|
|
|
|
# addmm
|
|
c = mx.random.uniform(shape=(3,))
|
|
out = mx.vmap(mx.addmm, in_axes=(None, 0, None))(c, a, b)
|
|
self.assertTrue(mx.allclose(out, mx.addmm(c, a, b)))
|
|
|
|
b = mx.random.uniform(shape=(4, 2))
|
|
|
|
# matmul
|
|
out = mx.vmap(mx.matmul, in_axes=(1, None), out_axes=(1,))(a, b)
|
|
expected = mx.moveaxis(mx.moveaxis(a, 1, 0) @ b, 0, 1)
|
|
self.assertTrue(mx.allclose(out, expected))
|
|
|
|
# addmm
|
|
c = mx.random.uniform(shape=(2,))
|
|
out = mx.vmap(mx.addmm, in_axes=(None, 1, None))(c, a, b)
|
|
self.assertTrue(mx.allclose(out, mx.addmm(c, mx.moveaxis(a, 1, 0), b)))
|
|
|
|
a = mx.random.uniform(shape=(2, 3, 4))
|
|
b = mx.random.uniform(shape=(4, 2, 3))
|
|
|
|
# matmul
|
|
out = mx.vmap(mx.matmul, in_axes=(0, 1))(a, b)
|
|
expected = a @ mx.moveaxis(b, 1, 0)
|
|
self.assertTrue(mx.allclose(out, expected))
|
|
|
|
# addmm
|
|
c = mx.random.uniform(shape=(3, 3, 2))
|
|
out = mx.vmap(mx.addmm, in_axes=(2, 0, 1))(c, a, b)
|
|
expected = mx.addmm(mx.moveaxis(c, 2, 0), a, mx.moveaxis(b, 1, 0))
|
|
self.assertTrue(mx.allclose(out, expected))
|
|
|
|
def test_vmap_svd(self):
|
|
a = mx.random.uniform(shape=(3, 4, 2))
|
|
|
|
cpu_svd_full = lambda x: mx.linalg.svd(x, compute_uv=True, stream=mx.cpu)
|
|
cpu_svd_singular = lambda x: mx.linalg.svd(x, compute_uv=False, stream=mx.cpu)
|
|
|
|
# Vmap over the first axis (this is already supported natively by the primitive).
|
|
Us, Ss, Vts = mx.vmap(cpu_svd_full, in_axes=(0,))(a)
|
|
self.assertEqual(Us.shape, (a.shape[0], a.shape[1], a.shape[1]))
|
|
self.assertEqual(Ss.shape, (a.shape[0], a.shape[2]))
|
|
self.assertEqual(Vts.shape, (a.shape[0], a.shape[2], a.shape[2]))
|
|
|
|
Sv = mx.vmap(cpu_svd_singular, in_axes=(0,))(a)
|
|
self.assertEqual(Sv.shape, (a.shape[0], a.shape[2]))
|
|
|
|
for i in range(a.shape[0]):
|
|
M = a[i]
|
|
U, S, Vt = Us[i], Ss[i], Vts[i]
|
|
self.assertTrue(
|
|
mx.allclose(U[:, : len(S)] @ mx.diag(S) @ Vt, M, rtol=1e-5, atol=1e-7)
|
|
)
|
|
self.assertTrue(
|
|
mx.allclose(
|
|
mx.linalg.norm(Sv[i]),
|
|
mx.linalg.norm(M, ord="fro"),
|
|
rtol=1e-5,
|
|
atol=1e-7,
|
|
)
|
|
)
|
|
|
|
# Vmap over the second axis.
|
|
Us, Ss, Vts = mx.vmap(cpu_svd_full, in_axes=(1,))(a)
|
|
self.assertEqual(Us.shape, (a.shape[1], a.shape[0], a.shape[0]))
|
|
self.assertEqual(Ss.shape, (a.shape[1], a.shape[2]))
|
|
self.assertEqual(Vts.shape, (a.shape[1], a.shape[2], a.shape[2]))
|
|
|
|
Sv = mx.vmap(cpu_svd_singular, in_axes=(1,))(a)
|
|
self.assertEqual(Sv.shape, (a.shape[1], a.shape[2]))
|
|
|
|
for i in range(a.shape[1]):
|
|
M = a[:, i, :]
|
|
U, S, Vt = Us[i], Ss[i], Vts[i]
|
|
self.assertTrue(
|
|
mx.allclose(U[:, : len(S)] @ mx.diag(S) @ Vt, M, rtol=1e-5, atol=1e-7)
|
|
)
|
|
self.assertTrue(
|
|
mx.allclose(
|
|
mx.linalg.norm(Sv[i]),
|
|
mx.linalg.norm(M, ord="fro"),
|
|
rtol=1e-5,
|
|
atol=1e-7,
|
|
)
|
|
)
|
|
|
|
def test_vmap_inverse(self):
|
|
mx.random.seed(42)
|
|
a = mx.random.uniform(shape=(3, 4, 4))
|
|
|
|
cpu_inv = lambda x: mx.linalg.inv(x, stream=mx.cpu)
|
|
|
|
# Vmap over the first axis (this is already supported natively by the primitive).
|
|
invs = mx.vmap(cpu_inv, in_axes=(0,))(a)
|
|
|
|
for i in range(a.shape[0]):
|
|
self.assertTrue(
|
|
mx.allclose(a[i] @ invs[i], mx.eye(a.shape[1]), rtol=1e-4, atol=1e-5)
|
|
)
|
|
|
|
a = mx.random.uniform(shape=(4, 3, 4))
|
|
|
|
# Without vmapping, each input matrix is not square.
|
|
with self.assertRaises(ValueError):
|
|
mx.eval(cpu_inv(a))
|
|
|
|
# Vmap over the second axis.
|
|
invs = mx.vmap(cpu_inv, in_axes=(1,))(a)
|
|
|
|
for i in range(a.shape[1]):
|
|
self.assertTrue(
|
|
mx.allclose(
|
|
a[:, i, :] @ invs[i], mx.eye(a.shape[0]), rtol=1e-4, atol=1e-5
|
|
)
|
|
)
|
|
|
|
def test_vmap_gather(self):
|
|
def gather(a, idx):
|
|
return a[idx]
|
|
|
|
a = mx.array([[1, 2], [3, 4]])
|
|
idx = mx.array(0)
|
|
out = mx.vmap(gather, (0, None))(a, idx)
|
|
self.assertTrue(mx.array_equal(out, mx.array([1, 3])))
|
|
|
|
out = mx.vmap(gather, (1, None))(a, idx)
|
|
self.assertTrue(mx.array_equal(out, mx.array([1, 2])))
|
|
|
|
idx = mx.array([0, 1])
|
|
out = mx.vmap(gather, (0, 0))(a, idx)
|
|
self.assertTrue(mx.array_equal(out, mx.array([1, 4])))
|
|
|
|
a = mx.ones((2, 3, 4))
|
|
idx = mx.zeros(4, mx.int32)
|
|
out = mx.vmap(gather, (2, 0))(a, idx)
|
|
self.assertEqual(out.shape, (4, 3))
|
|
|
|
f = mx.vmap(gather, (0, None))
|
|
f = mx.vmap(gather, (0, 0))
|
|
out = f(mx.ones((2, 3, 4)), mx.zeros(2, dtype=mx.int32))
|
|
self.assertEqual(out.shape, (2, 4))
|
|
|
|
def gather(a, idxa, idxb):
|
|
return a[idxa, idxb]
|
|
|
|
a = mx.ones((2, 3, 4))
|
|
idxa = mx.zeros((2, 3), mx.int32)
|
|
idxb = mx.zeros(3, mx.int32)
|
|
out = mx.vmap(gather, (0, 0, None))(a, idxa, idxb)
|
|
self.assertEqual(out.shape, (2, 3))
|
|
|
|
idxa = mx.zeros((3, 1, 2), mx.int32)
|
|
idxb = mx.zeros((2, 3, 1, 2), mx.int32)
|
|
out = mx.vmap(gather, (0, None, 0))(a, idxa, idxb)
|
|
self.assertEqual(out.shape, (2, 3, 1, 2))
|
|
|
|
idxa = mx.zeros((3, 1, 2), mx.int32)
|
|
idxb = mx.zeros((3, 1, 2, 2), mx.int32)
|
|
out = mx.vmap(gather, (0, None, 3))(a, idxa, idxb)
|
|
self.assertEqual(out.shape, (2, 3, 1, 2))
|
|
|
|
def test_vmap_scatter(self):
|
|
def scatter(a):
|
|
a[mx.array(0)] = mx.array(0.0)
|
|
return a
|
|
|
|
a = mx.array([[1.0, 2.0, 3.0], [2.0, 3.0, 4.0]])
|
|
out = mx.vmap(scatter)(a)
|
|
expected = mx.array([[0.0, 2.0, 3.0], [0.0, 3.0, 4.0]])
|
|
self.assertTrue(mx.allclose(out, expected))
|
|
|
|
out = mx.vmap(scatter, in_axes=(1,), out_axes=1)(a)
|
|
expected = mx.array([[0.0, 0.0, 0.0], [2.0, 3.0, 4.0]])
|
|
self.assertTrue(mx.allclose(out, expected))
|
|
|
|
def scatter_add(a):
|
|
return a.at[mx.array(0)].add(mx.array(1.0))
|
|
|
|
a = mx.array([[1.0, 2.0, 3.0], [2.0, 3.0, 4.0]])
|
|
out = mx.vmap(scatter_add)(a)
|
|
expected = mx.array([[2.0, 2.0, 3.0], [3.0, 3.0, 4.0]])
|
|
self.assertTrue(mx.allclose(out, expected))
|
|
|
|
out = mx.vmap(scatter_add, in_axes=(1,), out_axes=1)(a)
|
|
expected = mx.array([[2.0, 3.0, 4.0], [2.0, 3.0, 4.0]])
|
|
self.assertTrue(mx.allclose(out, expected))
|
|
|
|
# Multiple indices
|
|
def scatter(a):
|
|
a[mx.array([0, 1]), mx.array([0, 1])] = mx.array((1.0, 1.0))
|
|
return a
|
|
|
|
a = mx.zeros((3, 3, 3))
|
|
|
|
expected = mx.repeat(scatter(mx.zeros((3, 3)))[None], 3, axis=0)
|
|
out = mx.vmap(scatter, in_axes=(0,), out_axes=0)(a)
|
|
self.assertTrue(mx.allclose(out, expected))
|
|
|
|
expected = mx.zeros((3, 3, 3))
|
|
expected[0, :, 0] = 1
|
|
expected[1, :, 1] = 1
|
|
out = mx.vmap(scatter, in_axes=(1,), out_axes=1)(a)
|
|
self.assertTrue(mx.allclose(out, expected))
|
|
|
|
expected = mx.zeros((3, 3, 3))
|
|
expected[0, 0, :] = 1
|
|
expected[1, 1, :] = 1
|
|
out = mx.vmap(scatter, in_axes=(2,), out_axes=2)(a)
|
|
self.assertTrue(mx.allclose(out, expected))
|
|
|
|
# vmap over src and indices
|
|
def scatter(a, idx):
|
|
a[idx] = mx.array(1.0)
|
|
return a
|
|
|
|
a = mx.zeros((3, 4))
|
|
idx = mx.array([0, 1, 2])
|
|
out = mx.vmap(scatter, in_axes=(0, 0), out_axes=0)(a, idx)
|
|
self.assertTrue(mx.allclose(out, mx.eye(n=3, m=4)))
|
|
|
|
# vmap over only indices
|
|
out = mx.vmap(scatter, in_axes=(None, 0), out_axes=0)(a, idx)
|
|
expected = mx.zeros((3, 3, 4))
|
|
expected[0, 0] = 1
|
|
expected[1, 1] = 1
|
|
expected[2, 2] = 1
|
|
self.assertTrue(mx.allclose(out, expected))
|
|
|
|
# vmap over src, indices, updates
|
|
def scatter(a, idx, updates):
|
|
a[idx] = updates
|
|
return a
|
|
|
|
a = mx.zeros((3, 4))
|
|
idx = mx.array([0, 1, 2])
|
|
updates = mx.array([1, 2, 3])
|
|
out = mx.vmap(scatter, in_axes=(0, 0, 0), out_axes=0)(a, idx, updates)
|
|
expected = mx.diag(mx.array([1, 2, 3]), k=-1)[1:]
|
|
self.assertTrue(mx.allclose(out, expected))
|
|
|
|
# vmap over only updates
|
|
def scatter(a, idx, updates):
|
|
a[idx] = updates
|
|
return a
|
|
|
|
a = mx.zeros((3, 4))
|
|
idx = mx.array([0])
|
|
updates = mx.array([1, 2, 3])
|
|
out = mx.vmap(scatter, in_axes=(None, None, 0), out_axes=0)(a, idx, updates)
|
|
expected = mx.zeros((3, 3, 4))
|
|
expected[:, 0] = mx.array([1, 2, 3])[:, None]
|
|
self.assertTrue(mx.allclose(out, expected))
|
|
|
|
def test_vmap_const_func(self):
|
|
a = mx.random.uniform(shape=(2, 3, 4))
|
|
b = mx.random.uniform(shape=(4, 3))
|
|
|
|
def const_func(a, b):
|
|
return mx.array(2)
|
|
|
|
out = mx.vmap(const_func, in_axes=(0, None))(a, b)
|
|
self.assertTrue(mx.array_equal(mx.full((2,), 2), out))
|
|
out = mx.vmap(const_func, in_axes=(None, 0))(a, b)
|
|
self.assertTrue(mx.array_equal(mx.full((4,), 2), out))
|
|
out = mx.vmap(const_func, in_axes=(1, 1))(a, b)
|
|
self.assertTrue(mx.array_equal(mx.full((3,), 2), out))
|
|
|
|
with self.assertRaises(ValueError):
|
|
out = mx.vmap(const_func, in_axes=(None, None))(a, b)
|
|
|
|
with self.assertRaises(ValueError):
|
|
out = mx.vmap(const_func, in_axes=(0, 0))(a, b)
|
|
|
|
def test_vmap_concatenate(self):
|
|
x = mx.random.uniform(shape=(2, 2, 2))
|
|
|
|
def cat_fun(x, y):
|
|
return mx.concatenate([x, y], axis=1)
|
|
|
|
def cat_constant(x):
|
|
y = mx.ones((2, 1))
|
|
return mx.concatenate([x, y], 1)
|
|
|
|
out = mx.vmap(cat_fun, in_axes=(0, 2))(x, x)
|
|
target = mx.stack(
|
|
[mx.concatenate([x[i], x[:, :, i]], axis=1) for i in range(2)]
|
|
)
|
|
self.assertTrue(mx.array_equal(out, target))
|
|
|
|
out = mx.vmap(cat_constant)(x)
|
|
target = mx.concatenate([x, mx.ones((2, 2, 1))], axis=2)
|
|
self.assertTrue(mx.array_equal(out, target))
|
|
|
|
def test_vmap_take_along_axis(self):
|
|
a = mx.zeros((4, 5, 1))
|
|
idx = mx.zeros((2, 4, 1), mx.int32)
|
|
|
|
def fun(a, idx):
|
|
return mx.take_along_axis(a, idx, axis=0)
|
|
|
|
out = mx.vmap(fun, in_axes=(0, 1))(a, idx)
|
|
self.assertEqual(out.shape, (4, 2, 1))
|
|
|
|
idx = mx.zeros((2, 1), mx.int32)
|
|
|
|
out = mx.vmap(fun, in_axes=(0, None))(a, idx)
|
|
self.assertEqual(out.shape, (4, 2, 1))
|
|
|
|
a = mx.zeros((5, 1))
|
|
idx = mx.zeros((4, 2, 1), mx.int32)
|
|
|
|
out = mx.vmap(fun, in_axes=(None, 0))(a, idx)
|
|
self.assertEqual(out.shape, (4, 2, 1))
|
|
|
|
def test_vmap_put_along_axis(self):
|
|
a = mx.zeros((4, 5, 1))
|
|
idx = mx.ones((2, 4, 1), mx.int32)
|
|
upd = mx.ones((2, 4, 1))
|
|
|
|
def fun(a, idx, upd):
|
|
return mx.put_along_axis(a, idx, upd, axis=0)
|
|
|
|
out = mx.vmap(fun, in_axes=(0, 1, 1))(a, idx, upd)
|
|
self.assertEqual(out.shape, (4, 5, 1))
|
|
|
|
upd = mx.ones((2, 1))
|
|
out = mx.vmap(fun, in_axes=(0, 1, None))(a, idx, upd)
|
|
self.assertEqual(out.shape, (4, 5, 1))
|
|
|
|
idx = mx.ones((2, 1), mx.int32)
|
|
upd = mx.ones((2, 1))
|
|
out = mx.vmap(fun, in_axes=(0, None, None))(a, idx, upd)
|
|
self.assertEqual(out.shape, (4, 5, 1))
|
|
|
|
a = mx.zeros((5, 1))
|
|
idx = mx.ones((2, 4, 1), mx.int32)
|
|
upd = mx.ones((2, 4, 1))
|
|
out = mx.vmap(fun, in_axes=(None, 1, 1))(a, idx, upd)
|
|
self.assertEqual(out.shape, (4, 5, 1))
|
|
|
|
def test_vmap_split_vmap(self):
|
|
def fun(x):
|
|
a, b = mx.split(x, 2, 1)
|
|
return mx.concatenate([b, a], 1)
|
|
|
|
x = mx.ones((5, 6, 7))
|
|
y = mx.ones((5, 4, 6, 7))
|
|
fx = fun(x)
|
|
fy = mx.vmap(fun, in_axes=1)(y)
|
|
self.assertEqual(fx.shape, (5, 6, 7))
|
|
self.assertEqual(fy.shape, (4, 5, 6, 7))
|
|
|
|
def test_leaks(self):
|
|
if mx.metal.is_available():
|
|
mem_pre = mx.metal.get_active_memory()
|
|
else:
|
|
mem_pre = 0
|
|
|
|
def outer():
|
|
d = {}
|
|
|
|
def f(x):
|
|
return d["x"]
|
|
|
|
d["f"] = mx.vmap(f)
|
|
d["x"] = mx.array([0] * 1000)
|
|
|
|
for _ in range(5):
|
|
outer()
|
|
gc.collect()
|
|
|
|
if mx.metal.is_available():
|
|
mem_post = mx.metal.get_active_memory()
|
|
else:
|
|
mem_post = 0
|
|
|
|
self.assertEqual(mem_pre, mem_post)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|