mlx/python/tests/test_vmap.py
Abe Leininger 3835a428c5
Adds nuclear norm support (#1894)
* adjust norm unit test tolerance
2025-03-04 13:26:02 -08:00

665 lines
22 KiB
Python

# Copyright © 2023-2024 Apple Inc.
import gc
import unittest
import mlx.core as mx
import mlx_tests
class TestVmap(mlx_tests.MLXTestCase):
def test_basics(self):
# Can't vmap over scalars
with self.assertRaises(ValueError):
mx.vmap(mx.exp)(mx.array(1.0))
# Invalid input
with self.assertRaises(ValueError):
mx.vmap(mx.exp)("hello")
# Invalid axes
with self.assertRaises(ValueError):
mx.vmap(mx.exp, in_axes="hello")(mx.array([0, 1]))
with self.assertRaises(ValueError):
mx.vmap(mx.exp, in_axes=2)(mx.array([0, 1]))
with self.assertRaises(ValueError):
mx.vmap(mx.exp, out_axes="hello")(mx.array([0, 1]))
with self.assertRaises(ValueError):
mx.vmap(mx.exp, out_axes=2)(mx.array([0, 1]))
def test_unary(self):
ops = [
"abs",
"cos",
"erf",
"erfinv",
"exp",
"log",
"log1p",
"log2",
"log10",
"logical_not",
"negative",
"reciprocal",
"rsqrt",
"sigmoid",
"sign",
"sin",
"sqrt",
"square",
"degrees",
"radians",
]
for opname in ops:
with self.subTest(op=opname):
op = getattr(mx, opname)
x = mx.arange(5)
y = mx.vmap(op)(x)
self.assertTrue(mx.array_equal(y, op(x), equal_nan=True))
x = mx.arange(8).reshape(2, 4)
y = mx.vmap(op)(x)
self.assertTrue(mx.array_equal(y, op(x), equal_nan=True))
y = mx.vmap(op, in_axes=1, out_axes=1)(x)
self.assertTrue(mx.array_equal(y, op(x), equal_nan=True))
def test_binary(self):
ops = [
"add",
"divide",
"equal",
"greater",
"greater_equal",
"less",
"less_equal",
"logaddexp",
"maximum",
"minimum",
"multiply",
"power",
"subtract",
"logical_or",
"logical_and",
]
for opname in ops:
with self.subTest(op=opname):
op = getattr(mx, opname)
x = mx.random.uniform(shape=(5,))
y = mx.random.uniform(shape=(5,))
out = mx.vmap(op)(x, y)
self.assertTrue(mx.array_equal(out, op(x, y)))
x = mx.random.uniform(shape=(2, 4))
y = mx.random.uniform(shape=(2, 4))
out = mx.vmap(op)(x, y)
self.assertTrue(mx.array_equal(out, op(x, y)))
out = mx.vmap(op, in_axes=(0, 0), out_axes=0)(x, y)
self.assertTrue(mx.array_equal(out, op(x, y)))
y = mx.random.uniform(shape=(4, 2))
out = mx.vmap(op, in_axes=(0, 1), out_axes=0)(x, y)
self.assertTrue(mx.array_equal(out, op(x, y.T)))
out = mx.vmap(op, in_axes=(0, 1), out_axes=1)(x, y)
self.assertTrue(mx.array_equal(out, op(x, y.T).T))
def test_tree(self):
def my_fun(tree):
return (tree["a"] + tree["b"][0]) * tree["b"][1]
tree = {
"a": mx.random.uniform(shape=(2, 4)),
"b": (
mx.random.uniform(shape=(2, 4)),
mx.random.uniform(shape=(2, 4)),
),
}
out = mx.vmap(my_fun)(tree)
expected = my_fun(tree)
self.assertTrue(mx.array_equal(out, my_fun(tree)))
with self.assertRaises(ValueError):
mx.vmap(my_fun, in_axes={"a": 0, "b": ((0, 0), 0)}, out_axes=0)(tree)
out = mx.vmap(my_fun, in_axes={"a": 0, "b": 0}, out_axes=0)(tree)
self.assertTrue(mx.array_equal(out, my_fun(tree)))
out = mx.vmap(my_fun, in_axes={"a": 0, "b": (0, 0)}, out_axes=0)(tree)
self.assertTrue(mx.array_equal(out, my_fun(tree)))
tree = {
"a": mx.random.uniform(shape=(2, 4)),
"b": (
mx.random.uniform(shape=(4, 2)),
mx.random.uniform(shape=(4, 2)),
),
}
out = mx.vmap(my_fun, in_axes={"a": 0, "b": (1, 1)}, out_axes=0)(tree)
expected = (tree["a"] + tree["b"][0].T) * tree["b"][1].T
self.assertTrue(mx.array_equal(out, expected))
def my_fun(x, y):
return {"a": x + y, "b": x * y}
x = mx.random.uniform(shape=(2, 4))
y = mx.random.uniform(shape=(2, 4))
out = mx.vmap(my_fun, in_axes=0, out_axes=0)(x, y)
expected = my_fun(x, y)
self.assertTrue(mx.array_equal(out["a"], expected["a"]))
self.assertTrue(mx.array_equal(out["b"], expected["b"]))
with self.assertRaises(ValueError):
mx.vmap(my_fun, in_axes=0, out_axes=(0, 1))(x, y)
with self.assertRaises(ValueError):
mx.vmap(my_fun, in_axes=0, out_axes={"a": 0, "c": 1})(x, y)
out = mx.vmap(my_fun, in_axes=0, out_axes={"a": 1, "b": 0})(x, y)
expected = my_fun(x, y)
self.assertTrue(mx.array_equal(out["a"].T, expected["a"]))
self.assertTrue(mx.array_equal(out["b"], expected["b"]))
def test_vmap_indexing(self):
x = mx.arange(16).reshape(2, 2, 2, 2)
inds = mx.array([[0, 1, 0], [1, 1, 0]])
out = mx.vmap(lambda x, y: x[y], in_axes=(0, 0))(x, inds)
expected = mx.array(
[
[[[0, 1], [2, 3]], [[4, 5], [6, 7]], [[0, 1], [2, 3]]],
[[[12, 13], [14, 15]], [[12, 13], [14, 15]], [[8, 9], [10, 11]]],
]
)
self.assertTrue(mx.array_equal(out, expected))
out = mx.vmap(lambda x, y: x[y], in_axes=(0, None))(x, inds)
expected = mx.array(
[
[
[[[0, 1], [2, 3]], [[4, 5], [6, 7]], [[0, 1], [2, 3]]],
[[[4, 5], [6, 7]], [[4, 5], [6, 7]], [[0, 1], [2, 3]]],
],
[
[[[8, 9], [10, 11]], [[12, 13], [14, 15]], [[8, 9], [10, 11]]],
[[[12, 13], [14, 15]], [[12, 13], [14, 15]], [[8, 9], [10, 11]]],
],
]
)
self.assertTrue(mx.array_equal(out, expected))
out = mx.vmap(lambda x, y: x[y], in_axes=(None, 0))(x, inds)
expected = mx.array(
[
[
[[[0, 1], [2, 3]], [[4, 5], [6, 7]]],
[[[8, 9], [10, 11]], [[12, 13], [14, 15]]],
[[[0, 1], [2, 3]], [[4, 5], [6, 7]]],
],
[
[[[8, 9], [10, 11]], [[12, 13], [14, 15]]],
[[[8, 9], [10, 11]], [[12, 13], [14, 15]]],
[[[0, 1], [2, 3]], [[4, 5], [6, 7]]],
],
]
)
self.assertTrue(mx.array_equal(out, expected))
inds2 = mx.array([[0, 1, 0], [0, 1, 0]])
out = mx.vmap(lambda x, y, z: x[y, z], in_axes=(None, 0, 0))(x, inds, inds2)
expected = mx.array(
[
[[[0, 1], [2, 3]], [[12, 13], [14, 15]], [[0, 1], [2, 3]]],
[[[8, 9], [10, 11]], [[12, 13], [14, 15]], [[0, 1], [2, 3]]],
]
)
self.assertTrue(mx.array_equal(out, expected))
def test_vmap_reduce(self):
a = mx.ones((5, 5), mx.int32)
out = mx.vmap(lambda x: x.sum())(a)
self.assertTrue(mx.array_equal(out, mx.full((5,), 5)))
out = mx.vmap(lambda x: x.sum(keepdims=True))(a)
self.assertTrue(mx.array_equal(out, mx.full((5, 1), 5)))
out = mx.vmap(lambda x: x.sum(axis=0))(a)
self.assertTrue(mx.array_equal(out, mx.full((5,), 5)))
a = mx.ones((5, 3, 2), mx.int32)
out = mx.vmap(lambda x: x.sum(axis=(0, 1)))(a)
self.assertTrue(mx.array_equal(out, mx.full((5,), 6)))
a = mx.ones((5, 3, 2), mx.int32)
out = mx.vmap(lambda x: x.sum(axis=(0, 1)), in_axes=(1,))(a)
self.assertTrue(mx.array_equal(out, mx.full((3,), 10)))
a = mx.ones((5, 3, 2), mx.int32)
out = mx.vmap(lambda x: x.sum(axis=(0, 1)), in_axes=(2,))(a)
self.assertTrue(mx.array_equal(out, mx.full((2,), 15)))
def test_vmap_argreduce(self):
a = mx.array([[1, 2, 3], [2, 3, 1]])
out = mx.vmap(lambda x: mx.argmin(x))(a)
expected = mx.array([0, 2])
self.assertTrue(mx.array_equal(out, expected))
out = mx.vmap(lambda x: mx.argmax(x))(a)
expected = mx.array([2, 1])
self.assertTrue(mx.array_equal(out, expected))
def test_vmap_mean(self):
a = mx.arange(8).reshape(2, 4)
out = mx.vmap(mx.mean)(a)
expected = mx.mean(a, axis=1)
self.assertTrue(mx.allclose(out, expected))
a = mx.arange(16).reshape(2, 2, 4)
out = mx.vmap(mx.vmap(mx.mean))(a)
expected = mx.mean(a, axis=2)
self.assertTrue(mx.allclose(out, expected))
def test_mismatch_input_sizes(self):
a = mx.ones((10, 1))
b = mx.ones((1, 1, 1, 5))
with self.assertRaises(ValueError):
out = mx.vmap(lambda x, y: x + y)(a, b)
b = mx.ones((10, 5))
with self.assertRaises(ValueError):
out = mx.vmap(lambda x, y: x + y, in_axes=(0, 1))(a, b)
def test_vmap_matmul(self):
a = mx.random.uniform(shape=(2, 3, 4))
b = mx.random.uniform(shape=(4, 3))
# matmul
out = mx.vmap(mx.matmul, in_axes=(0, None))(a, b)
self.assertTrue(mx.allclose(out, a @ b))
# addmm
c = mx.random.uniform(shape=(3,))
out = mx.vmap(mx.addmm, in_axes=(None, 0, None))(c, a, b)
self.assertTrue(mx.allclose(out, mx.addmm(c, a, b)))
b = mx.random.uniform(shape=(4, 2))
# matmul
out = mx.vmap(mx.matmul, in_axes=(1, None), out_axes=(1,))(a, b)
expected = mx.moveaxis(mx.moveaxis(a, 1, 0) @ b, 0, 1)
self.assertTrue(mx.allclose(out, expected))
# addmm
c = mx.random.uniform(shape=(2,))
out = mx.vmap(mx.addmm, in_axes=(None, 1, None))(c, a, b)
self.assertTrue(mx.allclose(out, mx.addmm(c, mx.moveaxis(a, 1, 0), b)))
a = mx.random.uniform(shape=(2, 3, 4))
b = mx.random.uniform(shape=(4, 2, 3))
# matmul
out = mx.vmap(mx.matmul, in_axes=(0, 1))(a, b)
expected = a @ mx.moveaxis(b, 1, 0)
self.assertTrue(mx.allclose(out, expected))
# addmm
c = mx.random.uniform(shape=(3, 3, 2))
out = mx.vmap(mx.addmm, in_axes=(2, 0, 1))(c, a, b)
expected = mx.addmm(mx.moveaxis(c, 2, 0), a, mx.moveaxis(b, 1, 0))
self.assertTrue(mx.allclose(out, expected))
def test_vmap_svd(self):
a = mx.random.uniform(shape=(3, 4, 2))
cpu_svd_full = lambda x: mx.linalg.svd(x, compute_uv=True, stream=mx.cpu)
cpu_svd_singular = lambda x: mx.linalg.svd(x, compute_uv=False, stream=mx.cpu)
# Vmap over the first axis (this is already supported natively by the primitive).
Us, Ss, Vts = mx.vmap(cpu_svd_full, in_axes=(0,))(a)
self.assertEqual(Us.shape, (a.shape[0], a.shape[1], a.shape[1]))
self.assertEqual(Ss.shape, (a.shape[0], a.shape[2]))
self.assertEqual(Vts.shape, (a.shape[0], a.shape[2], a.shape[2]))
Sv = mx.vmap(cpu_svd_singular, in_axes=(0,))(a)
self.assertEqual(Sv.shape, (a.shape[0], a.shape[2]))
for i in range(a.shape[0]):
M = a[i]
U, S, Vt = Us[i], Ss[i], Vts[i]
self.assertTrue(
mx.allclose(U[:, : len(S)] @ mx.diag(S) @ Vt, M, rtol=1e-5, atol=1e-7)
)
self.assertTrue(
mx.allclose(
mx.linalg.norm(Sv[i]),
mx.linalg.norm(M, ord="fro"),
rtol=1e-5,
atol=1e-7,
)
)
# Vmap over the second axis.
Us, Ss, Vts = mx.vmap(cpu_svd_full, in_axes=(1,))(a)
self.assertEqual(Us.shape, (a.shape[1], a.shape[0], a.shape[0]))
self.assertEqual(Ss.shape, (a.shape[1], a.shape[2]))
self.assertEqual(Vts.shape, (a.shape[1], a.shape[2], a.shape[2]))
Sv = mx.vmap(cpu_svd_singular, in_axes=(1,))(a)
self.assertEqual(Sv.shape, (a.shape[1], a.shape[2]))
for i in range(a.shape[1]):
M = a[:, i, :]
U, S, Vt = Us[i], Ss[i], Vts[i]
self.assertTrue(
mx.allclose(U[:, : len(S)] @ mx.diag(S) @ Vt, M, rtol=1e-5, atol=1e-7)
)
self.assertTrue(
mx.allclose(
mx.linalg.norm(Sv[i]),
mx.linalg.norm(M, ord="fro"),
rtol=1e-5,
atol=1e-7,
)
)
def test_vmap_inverse(self):
mx.random.seed(42)
a = mx.random.uniform(shape=(3, 4, 4))
cpu_inv = lambda x: mx.linalg.inv(x, stream=mx.cpu)
# Vmap over the first axis (this is already supported natively by the primitive).
invs = mx.vmap(cpu_inv, in_axes=(0,))(a)
for i in range(a.shape[0]):
self.assertTrue(
mx.allclose(a[i] @ invs[i], mx.eye(a.shape[1]), rtol=1e-4, atol=1e-5)
)
a = mx.random.uniform(shape=(4, 3, 4))
# Without vmapping, each input matrix is not square.
with self.assertRaises(ValueError):
mx.eval(cpu_inv(a))
# Vmap over the second axis.
invs = mx.vmap(cpu_inv, in_axes=(1,))(a)
for i in range(a.shape[1]):
self.assertTrue(
mx.allclose(
a[:, i, :] @ invs[i], mx.eye(a.shape[0]), rtol=1e-4, atol=1e-5
)
)
def test_vmap_gather(self):
def gather(a, idx):
return a[idx]
a = mx.array([[1, 2], [3, 4]])
idx = mx.array(0)
out = mx.vmap(gather, (0, None))(a, idx)
self.assertTrue(mx.array_equal(out, mx.array([1, 3])))
out = mx.vmap(gather, (1, None))(a, idx)
self.assertTrue(mx.array_equal(out, mx.array([1, 2])))
idx = mx.array([0, 1])
out = mx.vmap(gather, (0, 0))(a, idx)
self.assertTrue(mx.array_equal(out, mx.array([1, 4])))
a = mx.ones((2, 3, 4))
idx = mx.zeros(4, mx.int32)
out = mx.vmap(gather, (2, 0))(a, idx)
self.assertEqual(out.shape, (4, 3))
f = mx.vmap(gather, (0, None))
f = mx.vmap(gather, (0, 0))
out = f(mx.ones((2, 3, 4)), mx.zeros(2, dtype=mx.int32))
self.assertEqual(out.shape, (2, 4))
def gather(a, idxa, idxb):
return a[idxa, idxb]
a = mx.ones((2, 3, 4))
idxa = mx.zeros((2, 3), mx.int32)
idxb = mx.zeros(3, mx.int32)
out = mx.vmap(gather, (0, 0, None))(a, idxa, idxb)
self.assertEqual(out.shape, (2, 3))
idxa = mx.zeros((3, 1, 2), mx.int32)
idxb = mx.zeros((2, 3, 1, 2), mx.int32)
out = mx.vmap(gather, (0, None, 0))(a, idxa, idxb)
self.assertEqual(out.shape, (2, 3, 1, 2))
idxa = mx.zeros((3, 1, 2), mx.int32)
idxb = mx.zeros((3, 1, 2, 2), mx.int32)
out = mx.vmap(gather, (0, None, 3))(a, idxa, idxb)
self.assertEqual(out.shape, (2, 3, 1, 2))
def test_vmap_scatter(self):
def scatter(a):
a[mx.array(0)] = mx.array(0.0)
return a
a = mx.array([[1.0, 2.0, 3.0], [2.0, 3.0, 4.0]])
out = mx.vmap(scatter)(a)
expected = mx.array([[0.0, 2.0, 3.0], [0.0, 3.0, 4.0]])
self.assertTrue(mx.allclose(out, expected))
out = mx.vmap(scatter, in_axes=(1,), out_axes=1)(a)
expected = mx.array([[0.0, 0.0, 0.0], [2.0, 3.0, 4.0]])
self.assertTrue(mx.allclose(out, expected))
def scatter_add(a):
return a.at[mx.array(0)].add(mx.array(1.0))
a = mx.array([[1.0, 2.0, 3.0], [2.0, 3.0, 4.0]])
out = mx.vmap(scatter_add)(a)
expected = mx.array([[2.0, 2.0, 3.0], [3.0, 3.0, 4.0]])
self.assertTrue(mx.allclose(out, expected))
out = mx.vmap(scatter_add, in_axes=(1,), out_axes=1)(a)
expected = mx.array([[2.0, 3.0, 4.0], [2.0, 3.0, 4.0]])
self.assertTrue(mx.allclose(out, expected))
# Multiple indices
def scatter(a):
a[mx.array([0, 1]), mx.array([0, 1])] = mx.array((1.0, 1.0))
return a
a = mx.zeros((3, 3, 3))
expected = mx.repeat(scatter(mx.zeros((3, 3)))[None], 3, axis=0)
out = mx.vmap(scatter, in_axes=(0,), out_axes=0)(a)
self.assertTrue(mx.allclose(out, expected))
expected = mx.zeros((3, 3, 3))
expected[0, :, 0] = 1
expected[1, :, 1] = 1
out = mx.vmap(scatter, in_axes=(1,), out_axes=1)(a)
self.assertTrue(mx.allclose(out, expected))
expected = mx.zeros((3, 3, 3))
expected[0, 0, :] = 1
expected[1, 1, :] = 1
out = mx.vmap(scatter, in_axes=(2,), out_axes=2)(a)
self.assertTrue(mx.allclose(out, expected))
# vmap over src and indices
def scatter(a, idx):
a[idx] = mx.array(1.0)
return a
a = mx.zeros((3, 4))
idx = mx.array([0, 1, 2])
out = mx.vmap(scatter, in_axes=(0, 0), out_axes=0)(a, idx)
self.assertTrue(mx.allclose(out, mx.eye(n=3, m=4)))
# vmap over only indices
out = mx.vmap(scatter, in_axes=(None, 0), out_axes=0)(a, idx)
expected = mx.zeros((3, 3, 4))
expected[0, 0] = 1
expected[1, 1] = 1
expected[2, 2] = 1
self.assertTrue(mx.allclose(out, expected))
# vmap over src, indices, updates
def scatter(a, idx, updates):
a[idx] = updates
return a
a = mx.zeros((3, 4))
idx = mx.array([0, 1, 2])
updates = mx.array([1, 2, 3])
out = mx.vmap(scatter, in_axes=(0, 0, 0), out_axes=0)(a, idx, updates)
expected = mx.diag(mx.array([1, 2, 3]), k=-1)[1:]
self.assertTrue(mx.allclose(out, expected))
# vmap over only updates
def scatter(a, idx, updates):
a[idx] = updates
return a
a = mx.zeros((3, 4))
idx = mx.array([0])
updates = mx.array([1, 2, 3])
out = mx.vmap(scatter, in_axes=(None, None, 0), out_axes=0)(a, idx, updates)
expected = mx.zeros((3, 3, 4))
expected[:, 0] = mx.array([1, 2, 3])[:, None]
self.assertTrue(mx.allclose(out, expected))
def test_vmap_const_func(self):
a = mx.random.uniform(shape=(2, 3, 4))
b = mx.random.uniform(shape=(4, 3))
def const_func(a, b):
return mx.array(2)
out = mx.vmap(const_func, in_axes=(0, None))(a, b)
self.assertTrue(mx.array_equal(mx.full((2,), 2), out))
out = mx.vmap(const_func, in_axes=(None, 0))(a, b)
self.assertTrue(mx.array_equal(mx.full((4,), 2), out))
out = mx.vmap(const_func, in_axes=(1, 1))(a, b)
self.assertTrue(mx.array_equal(mx.full((3,), 2), out))
with self.assertRaises(ValueError):
out = mx.vmap(const_func, in_axes=(None, None))(a, b)
with self.assertRaises(ValueError):
out = mx.vmap(const_func, in_axes=(0, 0))(a, b)
def test_vmap_concatenate(self):
x = mx.random.uniform(shape=(2, 2, 2))
def cat_fun(x, y):
return mx.concatenate([x, y], axis=1)
def cat_constant(x):
y = mx.ones((2, 1))
return mx.concatenate([x, y], 1)
out = mx.vmap(cat_fun, in_axes=(0, 2))(x, x)
target = mx.stack(
[mx.concatenate([x[i], x[:, :, i]], axis=1) for i in range(2)]
)
self.assertTrue(mx.array_equal(out, target))
out = mx.vmap(cat_constant)(x)
target = mx.concatenate([x, mx.ones((2, 2, 1))], axis=2)
self.assertTrue(mx.array_equal(out, target))
def test_vmap_take_along_axis(self):
a = mx.zeros((4, 5, 1))
idx = mx.zeros((2, 4, 1), mx.int32)
def fun(a, idx):
return mx.take_along_axis(a, idx, axis=0)
out = mx.vmap(fun, in_axes=(0, 1))(a, idx)
self.assertEqual(out.shape, (4, 2, 1))
idx = mx.zeros((2, 1), mx.int32)
out = mx.vmap(fun, in_axes=(0, None))(a, idx)
self.assertEqual(out.shape, (4, 2, 1))
a = mx.zeros((5, 1))
idx = mx.zeros((4, 2, 1), mx.int32)
out = mx.vmap(fun, in_axes=(None, 0))(a, idx)
self.assertEqual(out.shape, (4, 2, 1))
def test_vmap_put_along_axis(self):
a = mx.zeros((4, 5, 1))
idx = mx.ones((2, 4, 1), mx.int32)
upd = mx.ones((2, 4, 1))
def fun(a, idx, upd):
return mx.put_along_axis(a, idx, upd, axis=0)
out = mx.vmap(fun, in_axes=(0, 1, 1))(a, idx, upd)
self.assertEqual(out.shape, (4, 5, 1))
upd = mx.ones((2, 1))
out = mx.vmap(fun, in_axes=(0, 1, None))(a, idx, upd)
self.assertEqual(out.shape, (4, 5, 1))
idx = mx.ones((2, 1), mx.int32)
upd = mx.ones((2, 1))
out = mx.vmap(fun, in_axes=(0, None, None))(a, idx, upd)
self.assertEqual(out.shape, (4, 5, 1))
a = mx.zeros((5, 1))
idx = mx.ones((2, 4, 1), mx.int32)
upd = mx.ones((2, 4, 1))
out = mx.vmap(fun, in_axes=(None, 1, 1))(a, idx, upd)
self.assertEqual(out.shape, (4, 5, 1))
def test_vmap_split_vmap(self):
def fun(x):
a, b = mx.split(x, 2, 1)
return mx.concatenate([b, a], 1)
x = mx.ones((5, 6, 7))
y = mx.ones((5, 4, 6, 7))
fx = fun(x)
fy = mx.vmap(fun, in_axes=1)(y)
self.assertEqual(fx.shape, (5, 6, 7))
self.assertEqual(fy.shape, (4, 5, 6, 7))
def test_leaks(self):
if mx.metal.is_available():
mem_pre = mx.metal.get_active_memory()
else:
mem_pre = 0
def outer():
d = {}
def f(x):
return d["x"]
d["f"] = mx.vmap(f)
d["x"] = mx.array([0] * 1000)
for _ in range(5):
outer()
gc.collect()
if mx.metal.is_available():
mem_post = mx.metal.get_active_memory()
else:
mem_post = 0
self.assertEqual(mem_pre, mem_post)
if __name__ == "__main__":
unittest.main()