Files
mlx/mlx/backend/cuda/sort.cu
Awni Hannun ec0d5db67b [CUDA] Switch to CUDA graphs (#2317)
* cuda graph prototype

fix signal bug + start to add dependencies

capture more

capture more ops

remaining ops

fix reduce and rope deps

add concurrent context

try update, but not working

cosistent topology order

use node api

use node api directly to reduce overhead

fix bug

use kernels in unary

cache graph

format

fix synchronization

format

* comment
2025-07-02 15:59:13 -07:00

212 lines
6.4 KiB
Plaintext

// Copyright © 2025 Apple Inc.
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/backend/gpu/copy.h"
#include "mlx/dtype_utils.h"
#include "mlx/primitives.h"
#include <nvtx3/nvtx3.hpp>
#include <thrust/device_ptr.h>
#include <thrust/transform.h>
#include <cub/device/device_segmented_sort.cuh>
#include <cassert>
#include <numeric>
namespace mlx::core {
namespace {
template <typename T>
struct ModOp {
T divisor;
__device__ T operator()(T x) {
return x % divisor;
}
};
// We can not use any op in eval, make an utility.
array swapaxes_in_eval(const array& in, int axis1, int axis2) {
std::vector<int> axes(in.ndim());
std::iota(axes.begin(), axes.end(), 0);
std::swap(axes[axis1], axes[axis2]);
// TODO: Share the code with Transpose::eval.
Shape shape(axes.size());
Strides strides(in.ndim());
for (size_t ax = 0; ax < axes.size(); ++ax) {
shape[ax] = in.shape()[axes[ax]];
strides[ax] = in.strides()[axes[ax]];
}
auto flags = in.flags();
if (flags.contiguous) {
auto [_, row_contiguous, col_contiguous] = check_contiguity(shape, strides);
flags.row_contiguous = row_contiguous;
flags.col_contiguous = col_contiguous;
}
array out(shape, in.dtype(), nullptr, {});
out.copy_shared_buffer(in, strides, flags, in.data_size());
return out;
}
struct OffsetTransform {
int nsort;
int __device__ operator()(int i) {
return i * nsort;
}
};
void gpu_sort(const Stream& s, array in, array& out_, int axis, bool argsort) {
array out = out_;
auto& encoder = cu::get_command_encoder(s);
if (axis < 0) {
axis += in.ndim();
}
int nsort = in.shape(axis);
int last_dim = in.ndim() - 1;
// If we are not sorting the innermost dimension of a contiguous array,
// transpose and make a copy.
bool is_segmented_sort = in.flags().contiguous && in.strides()[axis] == 1;
if (!is_segmented_sort) {
array trans = swapaxes_in_eval(in, axis, last_dim);
in = array(trans.shape(), trans.dtype(), nullptr, {});
copy_gpu(trans, in, CopyType::General, s);
encoder.add_temporary(in);
out = array(allocator::malloc(out.nbytes()), in.shape(), out.dtype());
encoder.add_temporary(out);
} else {
out.set_data(
allocator::malloc(in.data_size() * out.itemsize()),
in.data_size(),
in.strides(),
in.flags());
}
encoder.set_input_array(in);
encoder.set_output_array(out);
dispatch_all_types(in.dtype(), [&](auto type_tag) {
using CTYPE = MLX_GET_TYPE(type_tag);
auto& stream = encoder.stream();
if constexpr (!std::is_same_v<CTYPE, complex64_t>) {
using Type = cuda_type_t<CTYPE>;
auto offsets = thrust::make_transform_iterator(
thrust::make_counting_iterator(0), OffsetTransform{nsort});
if (argsort) {
// Indices in the sorted dimension.
array indices(allocator::malloc(out.nbytes()), in.shape(), out.dtype());
encoder.add_temporary(indices);
// In argsort though we don't need the result of sorted values, the
// API requires us to provide an array to store it.
array discard(allocator::malloc(in.nbytes()), in.shape(), in.dtype());
encoder.add_temporary(discard);
size_t size;
CHECK_CUDA_ERROR(cub::DeviceSegmentedSort::StableSortPairs(
nullptr,
size,
in.data<Type>(),
discard.data<Type>(),
indices.data<uint32_t>(),
out.data<uint32_t>(),
in.data_size(),
in.data_size() / nsort,
offsets,
offsets + 1,
stream));
array temp(allocator::malloc(size), {static_cast<int>(size)}, uint8);
encoder.add_temporary(temp);
// Start capturing after allocations
auto capture = encoder.capture_context();
thrust::transform(
cu::thrust_policy(stream),
thrust::counting_iterator<uint32_t>(0),
thrust::counting_iterator<uint32_t>(indices.data_size()),
thrust::device_pointer_cast(indices.data<uint32_t>()),
ModOp<uint32_t>{static_cast<uint32_t>(nsort)});
CHECK_CUDA_ERROR(cub::DeviceSegmentedSort::StableSortPairs(
temp.data<void>(),
size,
in.data<Type>(),
discard.data<Type>(),
indices.data<uint32_t>(),
out.data<uint32_t>(),
in.data_size(),
in.data_size() / nsort,
offsets,
offsets + 1,
stream));
} else {
size_t size;
CHECK_CUDA_ERROR(cub::DeviceSegmentedSort::StableSortKeys(
nullptr,
size,
in.data<Type>(),
out.data<Type>(),
in.data_size(),
in.data_size() / nsort,
offsets,
offsets + 1,
stream));
array temp(allocator::malloc(size), {static_cast<int>(size)}, uint8);
encoder.add_temporary(temp);
// Start capturing after allocations
auto capture = encoder.capture_context();
CHECK_CUDA_ERROR(cub::DeviceSegmentedSort::StableSortKeys(
temp.data<void>(),
size,
in.data<Type>(),
out.data<Type>(),
in.data_size(),
in.data_size() / nsort,
offsets,
offsets + 1,
stream));
}
} else {
throw std::runtime_error(
"CUDA backend does not support sorting complex numbers");
}
});
if (!is_segmented_sort) {
// Swap the sorted axis back.
// TODO: Do in-place transpose instead of using a temporary out array.
copy_gpu(swapaxes_in_eval(out, axis, last_dim), out_, CopyType::General, s);
}
}
} // namespace
void ArgSort::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("ArgSort::eval_gpu");
assert(inputs.size() == 1);
gpu_sort(stream(), inputs[0], out, axis_, true);
}
void Sort::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("Sort::eval_gpu");
assert(inputs.size() == 1);
gpu_sort(stream(), inputs[0], out, axis_, false);
}
void ArgPartition::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("ArgPartition::eval_gpu");
gpu_sort(stream(), inputs[0], out, axis_, true);
}
void Partition::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("Partition::eval_gpu");
gpu_sort(stream(), inputs[0], out, axis_, false);
}
} // namespace mlx::core