mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 09:21:16 +08:00

This commit fixes a typo in the docstring for mlx.core.random.randint() by changing "roadcastable" to "broadcastable".
506 lines
19 KiB
C++
506 lines
19 KiB
C++
// Copyright © 2023-2024 Apple Inc.
|
|
|
|
#include <nanobind/nanobind.h>
|
|
#include <nanobind/stl/optional.h>
|
|
#include <nanobind/stl/variant.h>
|
|
#include <nanobind/stl/vector.h>
|
|
|
|
#include <chrono>
|
|
|
|
#include "python/src/utils.h"
|
|
|
|
#include "mlx/ops.h"
|
|
#include "mlx/random.h"
|
|
|
|
namespace mx = mlx::core;
|
|
namespace nb = nanobind;
|
|
using namespace nb::literals;
|
|
|
|
class PyKeySequence {
|
|
public:
|
|
explicit PyKeySequence(uint64_t seed) {
|
|
state_.append(mx::random::key(seed));
|
|
}
|
|
|
|
void seed(uint64_t seed) {
|
|
state_[0] = mx::random::key(seed);
|
|
}
|
|
|
|
mx::array next() {
|
|
auto out = mx::random::split(nb::cast<mx::array>(state_[0]));
|
|
state_[0] = out.first;
|
|
return out.second;
|
|
}
|
|
|
|
nb::list state() {
|
|
return state_;
|
|
}
|
|
|
|
void release() {
|
|
nb::gil_scoped_acquire gil;
|
|
state_.release().dec_ref();
|
|
}
|
|
|
|
private:
|
|
nb::list state_;
|
|
};
|
|
|
|
PyKeySequence& default_key() {
|
|
auto get_current_time_seed = []() {
|
|
auto now = std::chrono::system_clock::now();
|
|
return std::chrono::duration_cast<std::chrono::milliseconds>(
|
|
now.time_since_epoch())
|
|
.count();
|
|
};
|
|
static PyKeySequence ks(get_current_time_seed());
|
|
return ks;
|
|
}
|
|
|
|
void init_random(nb::module_& parent_module) {
|
|
auto m = parent_module.def_submodule(
|
|
"random",
|
|
"mlx.core.random: functionality related to random number generation");
|
|
|
|
m.attr("state") = default_key().state();
|
|
m.def(
|
|
"seed",
|
|
[](uint64_t seed) { default_key().seed(seed); },
|
|
"seed"_a,
|
|
R"pbdoc(
|
|
Seed the global PRNG.
|
|
|
|
Args:
|
|
seed (int): Seed for the global PRNG.
|
|
)pbdoc");
|
|
m.def(
|
|
"key",
|
|
&mx::random::key,
|
|
"seed"_a,
|
|
R"pbdoc(
|
|
Get a PRNG key from a seed.
|
|
|
|
Args:
|
|
seed (int): Seed for the PRNG.
|
|
|
|
Returns:
|
|
array: The PRNG key array.
|
|
)pbdoc");
|
|
m.def(
|
|
"split",
|
|
nb::overload_cast<const mx::array&, int, mx::StreamOrDevice>(
|
|
&mx::random::split),
|
|
"key"_a,
|
|
"num"_a = 2,
|
|
"stream"_a = nb::none(),
|
|
nb::sig(
|
|
"def split(key: array, num: int = 2, stream: Union[None, Stream, Device] = None) -> array"),
|
|
R"pbdoc(
|
|
Split a PRNG key into sub keys.
|
|
|
|
Args:
|
|
key (array): Input key to split.
|
|
num (int, optional): Number of sub keys. Default: ``2``.
|
|
|
|
Returns:
|
|
array: The array of sub keys with ``num`` as its first dimension.
|
|
)pbdoc");
|
|
m.def(
|
|
"uniform",
|
|
[](const ScalarOrArray& low,
|
|
const ScalarOrArray& high,
|
|
const mx::Shape& shape,
|
|
std::optional<mx::Dtype> type,
|
|
const std::optional<mx::array>& key_,
|
|
mx::StreamOrDevice s) {
|
|
auto key = key_ ? key_.value() : default_key().next();
|
|
return mx::random::uniform(
|
|
to_array(low),
|
|
to_array(high),
|
|
shape,
|
|
type.value_or(mx::float32),
|
|
key,
|
|
s);
|
|
},
|
|
"low"_a = 0,
|
|
"high"_a = 1,
|
|
"shape"_a = mx::Shape{},
|
|
"dtype"_a.none() = mx::float32,
|
|
"key"_a = nb::none(),
|
|
"stream"_a = nb::none(),
|
|
nb::sig(
|
|
"def uniform(low: Union[scalar, array] = 0, high: Union[scalar, array] = 1, shape: Sequence[int] = [], dtype: Optional[Dtype] = float32, key: Optional[array] = None, stream: Union[None, Stream, Device] = None) -> array"),
|
|
R"pbdoc(
|
|
Generate uniformly distributed random numbers.
|
|
|
|
The values are sampled uniformly in the half-open interval ``[low, high)``.
|
|
The lower and upper bound can be scalars or arrays and must be
|
|
broadcastable to ``shape``.
|
|
|
|
Args:
|
|
low (scalar or array, optional): Lower bound of the distribution.
|
|
Default: ``0``.
|
|
high (scalar or array, optional): Upper bound of the distribution.
|
|
Default: ``1``.
|
|
shape (list(int), optional): Shape of the output. Default:``()``.
|
|
dtype (Dtype, optional): Type of the output. Default: ``float32``.
|
|
key (array, optional): A PRNG key. Default: ``None``.
|
|
|
|
Returns:
|
|
array: The output array random values.
|
|
)pbdoc");
|
|
m.def(
|
|
"normal",
|
|
[](const mx::Shape& shape,
|
|
std::optional<mx::Dtype> type,
|
|
float loc,
|
|
float scale,
|
|
const std::optional<mx::array>& key_,
|
|
mx::StreamOrDevice s) {
|
|
auto key = key_ ? key_.value() : default_key().next();
|
|
return mx::random::normal(
|
|
shape, type.value_or(mx::float32), loc, scale, key, s);
|
|
},
|
|
"shape"_a = mx::Shape{},
|
|
"dtype"_a.none() = mx::float32,
|
|
"loc"_a = 0.0,
|
|
"scale"_a = 1.0,
|
|
"key"_a = nb::none(),
|
|
"stream"_a = nb::none(),
|
|
nb::sig(
|
|
"def normal(shape: Sequence[int] = [], dtype: Optional[Dtype] = float32, loc: float = 0.0, scale: float = 1.0, key: Optional[array] = None, stream: Union[None, Stream, Device] = None) -> array"),
|
|
R"pbdoc(
|
|
Generate normally distributed random numbers.
|
|
|
|
Args:
|
|
shape (list(int), optional): Shape of the output. Default is ``()``.
|
|
dtype (Dtype, optional): Type of the output. Default is ``float32``.
|
|
loc (float, optional): Mean of the distribution. Default is ``0.0``.
|
|
scale (float, optional): Standard deviation of the distribution. Default is ``1.0``.
|
|
key (array, optional): A PRNG key. Default: None.
|
|
|
|
Returns:
|
|
array: The output array of random values.
|
|
)pbdoc");
|
|
m.def(
|
|
"multivariate_normal",
|
|
[](const mx::array& mean,
|
|
const mx::array& cov,
|
|
const mx::Shape& shape,
|
|
std::optional<mx::Dtype> type,
|
|
const std::optional<mx::array>& key_,
|
|
mx::StreamOrDevice s) {
|
|
auto key = key_ ? key_.value() : default_key().next();
|
|
return mx::random::multivariate_normal(
|
|
mean, cov, shape, type.value_or(mx::float32), key, s);
|
|
},
|
|
"mean"_a,
|
|
"cov"_a,
|
|
"shape"_a = mx::Shape{},
|
|
"dtype"_a.none() = mx::float32,
|
|
"key"_a = nb::none(),
|
|
"stream"_a = nb::none(),
|
|
nb::sig(
|
|
"def multivariate_normal(mean: array, cov: array, shape: Sequence[int] = [], dtype: Optional[Dtype] = float32, key: Optional[array] = None, stream: Union[None, Stream, Device] = None) -> array"),
|
|
R"pbdoc(
|
|
Generate jointly-normal random samples given a mean and covariance.
|
|
|
|
The matrix ``cov`` must be positive semi-definite. The behavior is
|
|
undefined if it is not. The only supported ``dtype`` is ``float32``.
|
|
|
|
Args:
|
|
mean (array): array of shape ``(..., n)``, the mean of the
|
|
distribution.
|
|
cov (array): array of shape ``(..., n, n)``, the covariance
|
|
matrix of the distribution. The batch shape ``...`` must be
|
|
broadcast-compatible with that of ``mean``.
|
|
shape (list(int), optional): The output shape must be
|
|
broadcast-compatible with ``mean.shape[:-1]`` and ``cov.shape[:-2]``.
|
|
If empty, the result shape is determined by broadcasting the batch
|
|
shapes of ``mean`` and ``cov``. Default: ``[]``.
|
|
dtype (Dtype, optional): The output type. Default: ``float32``.
|
|
key (array, optional): A PRNG key. Default: ``None``.
|
|
|
|
Returns:
|
|
array: The output array of random values.
|
|
)pbdoc");
|
|
m.def(
|
|
"randint",
|
|
[](const ScalarOrArray& low,
|
|
const ScalarOrArray& high,
|
|
const mx::Shape& shape,
|
|
std::optional<mx::Dtype> type,
|
|
const std::optional<mx::array>& key_,
|
|
mx::StreamOrDevice s) {
|
|
auto key = key_ ? key_.value() : default_key().next();
|
|
return mx::random::randint(
|
|
to_array(low),
|
|
to_array(high),
|
|
shape,
|
|
type.value_or(mx::int32),
|
|
key,
|
|
s);
|
|
},
|
|
"low"_a,
|
|
"high"_a,
|
|
"shape"_a = mx::Shape{},
|
|
"dtype"_a.none() = mx::int32,
|
|
"key"_a = nb::none(),
|
|
"stream"_a = nb::none(),
|
|
nb::sig(
|
|
"def randint(low: Union[scalar, array], high: Union[scalar, array], shape: Sequence[int] = [], dtype: Optional[Dtype] = int32, key: Optional[array] = None, stream: Union[None, Stream, Device] = None) -> array"),
|
|
R"pbdoc(
|
|
Generate random integers from the given interval.
|
|
|
|
The values are sampled with equal probability from the integers in
|
|
half-open interval ``[low, high)``. The lower and upper bound can be
|
|
scalars or arrays and must be broadcastable to ``shape``.
|
|
|
|
Args:
|
|
low (scalar or array): Lower bound of the interval.
|
|
high (scalar or array): Upper bound of the interval.
|
|
shape (list(int), optional): Shape of the output. Default: ``()``.
|
|
dtype (Dtype, optional): Type of the output. Default: ``int32``.
|
|
key (array, optional): A PRNG key. Default: ``None``.
|
|
|
|
Returns:
|
|
array: The array of random integers.
|
|
)pbdoc");
|
|
m.def(
|
|
"bernoulli",
|
|
[](const ScalarOrArray& p_,
|
|
const std::optional<mx::Shape> shape,
|
|
const std::optional<mx::array>& key_,
|
|
mx::StreamOrDevice s) {
|
|
auto key = key_ ? key_.value() : default_key().next();
|
|
auto p = to_array(p_);
|
|
if (shape.has_value()) {
|
|
return mx::random::bernoulli(p, shape.value(), key, s);
|
|
} else {
|
|
return mx::random::bernoulli(p, key, s);
|
|
}
|
|
},
|
|
"p"_a = 0.5,
|
|
"shape"_a = nb::none(),
|
|
"key"_a = nb::none(),
|
|
"stream"_a = nb::none(),
|
|
nb::sig(
|
|
"def bernoulli(p: Union[scalar, array] = 0.5, shape: Optional[Sequence[int]] = None, key: Optional[array] = None, stream: Union[None, Stream, Device] = None) -> array"),
|
|
R"pbdoc(
|
|
Generate Bernoulli random values.
|
|
|
|
The values are sampled from the bernoulli distribution with parameter
|
|
``p``. The parameter ``p`` can be a :obj:`float` or :obj:`array` and
|
|
must be broadcastable to ``shape``.
|
|
|
|
Args:
|
|
p (float or array, optional): Parameter of the Bernoulli
|
|
distribution. Default: ``0.5``.
|
|
shape (list(int), optional): Shape of the output.
|
|
Default: ``p.shape``.
|
|
key (array, optional): A PRNG key. Default: ``None``.
|
|
|
|
Returns:
|
|
array: The array of random integers.
|
|
)pbdoc");
|
|
m.def(
|
|
"truncated_normal",
|
|
[](const ScalarOrArray& lower_,
|
|
const ScalarOrArray& upper_,
|
|
const std::optional<mx::Shape> shape_,
|
|
std::optional<mx::Dtype> type,
|
|
const std::optional<mx::array>& key_,
|
|
mx::StreamOrDevice s) {
|
|
auto key = key_ ? key_.value() : default_key().next();
|
|
auto lower = to_array(lower_);
|
|
auto upper = to_array(upper_);
|
|
auto t = type.value_or(mx::float32);
|
|
if (shape_.has_value()) {
|
|
return mx::random::truncated_normal(
|
|
lower, upper, shape_.value(), t, key, s);
|
|
} else {
|
|
return mx::random::truncated_normal(lower, upper, t, key, s);
|
|
}
|
|
},
|
|
"lower"_a,
|
|
"upper"_a,
|
|
"shape"_a = nb::none(),
|
|
"dtype"_a.none() = mx::float32,
|
|
"key"_a = nb::none(),
|
|
"stream"_a = nb::none(),
|
|
nb::sig(
|
|
"def truncated_normal(lower: Union[scalar, array], upper: Union[scalar, array], shape: Optional[Sequence[int]] = None, dtype: Optional[Dtype] = float32, key: Optional[array] = None, stream: Union[None, Stream, Device] = None) -> array"),
|
|
R"pbdoc(
|
|
Generate values from a truncated normal distribution.
|
|
|
|
The values are sampled from the truncated normal distribution
|
|
on the domain ``(lower, upper)``. The bounds ``lower`` and ``upper``
|
|
can be scalars or arrays and must be broadcastable to ``shape``.
|
|
|
|
Args:
|
|
lower (scalar or array): Lower bound of the domain.
|
|
upper (scalar or array): Upper bound of the domain.
|
|
shape (list(int), optional): The shape of the output.
|
|
Default:``()``.
|
|
dtype (Dtype, optional): The data type of the output.
|
|
Default: ``float32``.
|
|
key (array, optional): A PRNG key. Default: ``None``.
|
|
|
|
Returns:
|
|
array: The output array of random values.
|
|
)pbdoc");
|
|
m.def(
|
|
"gumbel",
|
|
[](const mx::Shape& shape,
|
|
std::optional<mx::Dtype> type,
|
|
const std::optional<mx::array>& key_,
|
|
mx::StreamOrDevice s) {
|
|
auto key = key_ ? key_.value() : default_key().next();
|
|
return mx::random::gumbel(shape, type.value_or(mx::float32), key, s);
|
|
},
|
|
"shape"_a = mx::Shape{},
|
|
"dtype"_a.none() = mx::float32,
|
|
"key"_a = nb::none(),
|
|
"stream"_a = nb::none(),
|
|
nb::sig(
|
|
"def gumbel(shape: Sequence[int] = [], dtype: Optional[Dtype] = float32, key: Union[None, Stream, Device] = None, stream: Optional[array] = None) -> array"),
|
|
R"pbdoc(
|
|
Sample from the standard Gumbel distribution.
|
|
|
|
The values are sampled from a standard Gumbel distribution
|
|
which CDF ``exp(-exp(-x))``.
|
|
|
|
Args:
|
|
shape (list(int)): The shape of the output.
|
|
dtype (Dtype, optional): The data type of the output.
|
|
Default: ``float32``.
|
|
key (array, optional): A PRNG key. Default: ``None``.
|
|
|
|
Returns:
|
|
array:
|
|
The :class:`array` with shape ``shape`` and distributed according
|
|
to the Gumbel distribution.
|
|
)pbdoc");
|
|
m.def(
|
|
"categorical",
|
|
[](const mx::array& logits,
|
|
int axis,
|
|
const std::optional<mx::Shape> shape,
|
|
const std::optional<int> num_samples,
|
|
const std::optional<mx::array>& key_,
|
|
mx::StreamOrDevice s) {
|
|
auto key = key_ ? key_.value() : default_key().next();
|
|
if (shape.has_value() && num_samples.has_value()) {
|
|
throw std::invalid_argument(
|
|
"[categorical] At most one of shape or num_samples can be specified.");
|
|
} else if (shape.has_value()) {
|
|
return mx::random::categorical(logits, axis, shape.value(), key, s);
|
|
} else if (num_samples.has_value()) {
|
|
return mx::random::categorical(
|
|
logits, axis, num_samples.value(), key, s);
|
|
} else {
|
|
return mx::random::categorical(logits, axis, key, s);
|
|
}
|
|
},
|
|
"logits"_a,
|
|
"axis"_a = -1,
|
|
"shape"_a = nb::none(),
|
|
"num_samples"_a = nb::none(),
|
|
"key"_a = nb::none(),
|
|
"stream"_a = nb::none(),
|
|
nb::sig(
|
|
"def categorical(logits: array, axis: int = -1, shape: Optional[Sequence[int]] = None, num_samples: Optional[int] = None, key: Optional[array] = None, stream: Union[None, Stream, Device] = None) -> array"),
|
|
R"pbdoc(
|
|
Sample from a categorical distribution.
|
|
|
|
The values are sampled from the categorical distribution specified by
|
|
the unnormalized values in ``logits``. Note, at most one of ``shape``
|
|
or ``num_samples`` can be specified. If both are ``None``, the output
|
|
has the same shape as ``logits`` with the ``axis`` dimension removed.
|
|
|
|
Args:
|
|
logits (array): The *unnormalized* categorical distribution(s).
|
|
axis (int, optional): The axis which specifies the distribution.
|
|
Default: ``-1``.
|
|
shape (list(int), optional): The shape of the output. This must
|
|
be broadcast compatable with ``logits.shape`` with the ``axis``
|
|
dimension removed. Default: ``None``
|
|
num_samples (int, optional): The number of samples to draw from each
|
|
of the categorical distributions in ``logits``. The output will have
|
|
``num_samples`` in the last dimension. Default: ``None``.
|
|
key (array, optional): A PRNG key. Default: ``None``.
|
|
|
|
Returns:
|
|
array: The ``shape``-sized output array with type ``uint32``.
|
|
)pbdoc");
|
|
m.def(
|
|
"laplace",
|
|
[](const mx::Shape& shape,
|
|
std::optional<mx::Dtype> type,
|
|
float loc,
|
|
float scale,
|
|
const std::optional<mx::array>& key_,
|
|
mx::StreamOrDevice s) {
|
|
auto key = key_ ? key_.value() : default_key().next();
|
|
return mx::random::laplace(
|
|
shape, type.value_or(mx::float32), loc, scale, key, s);
|
|
},
|
|
"shape"_a = mx::Shape{},
|
|
"dtype"_a.none() = mx::float32,
|
|
"loc"_a = 0.0,
|
|
"scale"_a = 1.0,
|
|
"key"_a = nb::none(),
|
|
"stream"_a = nb::none(),
|
|
nb::sig(
|
|
"def laplace(shape: Sequence[int] = [], dtype: Optional[Dtype] = float32, loc: float = 0.0, scale: float = 1.0, key: Optional[array] = None, stream: Union[None, Stream, Device] = None) -> array"),
|
|
R"pbdoc(
|
|
Sample numbers from a Laplace distribution.
|
|
|
|
Args:
|
|
shape (list(int), optional): Shape of the output. Default: ``()``.
|
|
dtype (Dtype, optional): Type of the output. Default: ``float32``.
|
|
loc (float, optional): Mean of the distribution. Default: ``0.0``.
|
|
scale (float, optional): The scale "b" of the Laplace distribution.
|
|
Default:``1.0``.
|
|
key (array, optional): A PRNG key. Default: ``None``.
|
|
|
|
Returns:
|
|
array: The output array of random values.
|
|
)pbdoc");
|
|
m.def(
|
|
"permuation",
|
|
[](const std::variant<nb::int_, mx::array>& x,
|
|
int axis,
|
|
const std::optional<mx::array>& key_,
|
|
mx::StreamOrDevice s) {
|
|
auto key = key_ ? key_.value() : default_key().next();
|
|
if (auto pv = std::get_if<nb::int_>(&x); pv) {
|
|
return mx::random::permutation(nb::cast<int>(*pv), key, s);
|
|
} else {
|
|
return mx::random::permutation(std::get<mx::array>(x), axis, key, s);
|
|
}
|
|
},
|
|
"x"_a,
|
|
"axis"_a = 0,
|
|
"key"_a = nb::none(),
|
|
"stream"_a = nb::none(),
|
|
nb::sig(
|
|
"def permutation(x: Union[int, array], axis: int = 0, key: Optional[array] = None, stream: Union[None, Stream, Device] = None) -> array"),
|
|
R"pbdoc(
|
|
Generate a random permutation or permute the entries of an array.
|
|
|
|
Args:
|
|
x (int or array, optional): If an integer is provided a random
|
|
permtuation of ``mx.arange(x)`` is returned. Otherwise the entries
|
|
of ``x`` along the given axis are randomly permuted.
|
|
axis (int, optional): The axis to permute along. Default: ``0``.
|
|
key (array, optional): A PRNG key. Default: ``None``.
|
|
|
|
Returns:
|
|
array:
|
|
The generated random permutation or randomly permuted input array.
|
|
)pbdoc");
|
|
// Register static Python object cleanup before the interpreter exits
|
|
auto atexit = nb::module_::import_("atexit");
|
|
atexit.attr("register")(nb::cpp_function([]() { default_key().release(); }));
|
|
}
|