mirror of
				https://github.com/ml-explore/mlx.git
				synced 2025-11-04 10:38:10 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			140 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			140 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Copyright © 2023 Apple Inc.
 | 
						|
import unittest
 | 
						|
 | 
						|
import mlx.core as mx
 | 
						|
import mlx.nn.init as init
 | 
						|
import mlx_tests
 | 
						|
import numpy as np
 | 
						|
 | 
						|
 | 
						|
class TestInit(mlx_tests.MLXTestCase):
 | 
						|
    def test_constant(self):
 | 
						|
        value = 5.0
 | 
						|
 | 
						|
        for dtype in [mx.float32, mx.float16]:
 | 
						|
            initializer = init.constant(value, dtype)
 | 
						|
            for shape in [(3,), (3, 3), (3, 3, 3)]:
 | 
						|
                result = initializer(mx.array(mx.zeros(shape)))
 | 
						|
                with self.subTest(shape=shape):
 | 
						|
                    self.assertEqual(result.shape, shape)
 | 
						|
                    self.assertEqual(result.dtype, dtype)
 | 
						|
 | 
						|
    def test_normal(self):
 | 
						|
        mean = 0.0
 | 
						|
        std = 1.0
 | 
						|
        for dtype in [mx.float32, mx.float16]:
 | 
						|
            initializer = init.normal(mean, std, dtype=dtype)
 | 
						|
            for shape in [(3,), (3, 3), (3, 3, 3)]:
 | 
						|
                result = initializer(mx.array(np.empty(shape)))
 | 
						|
                with self.subTest(shape=shape):
 | 
						|
                    self.assertEqual(result.shape, shape)
 | 
						|
                    self.assertEqual(result.dtype, dtype)
 | 
						|
 | 
						|
    def test_uniform(self):
 | 
						|
        low = -1.0
 | 
						|
        high = 1.0
 | 
						|
 | 
						|
        for dtype in [mx.float32, mx.float16]:
 | 
						|
            initializer = init.uniform(low, high, dtype)
 | 
						|
            for shape in [(3,), (3, 3), (3, 3, 3)]:
 | 
						|
                result = initializer(mx.array(np.empty(shape)))
 | 
						|
                with self.subTest(shape=shape):
 | 
						|
                    self.assertEqual(result.shape, shape)
 | 
						|
                    self.assertEqual(result.dtype, dtype)
 | 
						|
                    self.assertTrue(mx.all(result >= low) and mx.all(result <= high))
 | 
						|
 | 
						|
    def test_identity(self):
 | 
						|
        for dtype in [mx.float32, mx.float16]:
 | 
						|
            initializer = init.identity(dtype)
 | 
						|
            for shape in [(3,), (3, 3), (3, 3, 3)]:
 | 
						|
                result = initializer(mx.zeros((3, 3)))
 | 
						|
                self.assertTrue(mx.array_equal(result, mx.eye(3)))
 | 
						|
                self.assertEqual(result.dtype, dtype)
 | 
						|
                with self.assertRaises(ValueError):
 | 
						|
                    result = initializer(mx.zeros((3, 2)))
 | 
						|
 | 
						|
    def test_glorot_normal(self):
 | 
						|
        for dtype in [mx.float32, mx.float16]:
 | 
						|
            initializer = init.glorot_normal(dtype)
 | 
						|
            for shape in [(3, 3), (3, 3, 3)]:
 | 
						|
                result = initializer(mx.array(np.empty(shape)))
 | 
						|
                with self.subTest(shape=shape):
 | 
						|
                    self.assertEqual(result.shape, shape)
 | 
						|
                    self.assertEqual(result.dtype, dtype)
 | 
						|
 | 
						|
    def test_glorot_uniform(self):
 | 
						|
        for dtype in [mx.float32, mx.float16]:
 | 
						|
            initializer = init.glorot_uniform(dtype)
 | 
						|
            for shape in [(3, 3), (3, 3, 3)]:
 | 
						|
                result = initializer(mx.array(np.empty(shape)))
 | 
						|
                with self.subTest(shape=shape):
 | 
						|
                    self.assertEqual(result.shape, shape)
 | 
						|
                    self.assertEqual(result.dtype, dtype)
 | 
						|
 | 
						|
    def test_he_normal(self):
 | 
						|
        for dtype in [mx.float32, mx.float16]:
 | 
						|
            initializer = init.he_normal(dtype)
 | 
						|
            for shape in [(3, 3), (3, 3, 3)]:
 | 
						|
                result = initializer(mx.array(np.empty(shape)))
 | 
						|
                with self.subTest(shape=shape):
 | 
						|
                    self.assertEqual(result.shape, shape)
 | 
						|
                    self.assertEqual(result.dtype, dtype)
 | 
						|
 | 
						|
    def test_he_uniform(self):
 | 
						|
        for dtype in [mx.float32, mx.float16]:
 | 
						|
            initializer = init.he_uniform(dtype)
 | 
						|
            for shape in [(3, 3), (3, 3, 3)]:
 | 
						|
                result = initializer(mx.array(np.empty(shape)))
 | 
						|
                with self.subTest(shape=shape):
 | 
						|
                    self.assertEqual(result.shape, shape)
 | 
						|
                    self.assertEqual(result.dtype, dtype)
 | 
						|
 | 
						|
    def test_sparse(self):
 | 
						|
        mean = 0.0
 | 
						|
        std = 1.0
 | 
						|
        sparsity = 0.5
 | 
						|
        for dtype in [mx.float32, mx.float16]:
 | 
						|
            initializer = init.sparse(sparsity, mean, std, dtype=dtype)
 | 
						|
            for shape in [(3, 2), (2, 2), (4, 3)]:
 | 
						|
                result = initializer(mx.array(np.empty(shape)))
 | 
						|
                with self.subTest(shape=shape):
 | 
						|
                    self.assertEqual(result.shape, shape)
 | 
						|
                    self.assertEqual(result.dtype, dtype)
 | 
						|
                    self.assertEqual(
 | 
						|
                        (mx.sum(result == 0) >= 0.5 * shape[0] * shape[1]), True
 | 
						|
                    )
 | 
						|
            with self.assertRaises(ValueError):
 | 
						|
                result = initializer(mx.zeros((1,)))
 | 
						|
 | 
						|
    def test_orthogonal(self):
 | 
						|
        initializer = init.orthogonal(gain=1.0, dtype=mx.float32)
 | 
						|
 | 
						|
        # Test with a square matrix
 | 
						|
        shape = (4, 4)
 | 
						|
        result = initializer(mx.zeros(shape, dtype=mx.float32))
 | 
						|
        self.assertEqual(result.shape, shape)
 | 
						|
        self.assertEqual(result.dtype, mx.float32)
 | 
						|
 | 
						|
        I = result @ result.T
 | 
						|
        eye = mx.eye(shape[0], dtype=mx.float32)
 | 
						|
        self.assertTrue(
 | 
						|
            mx.allclose(I, eye, atol=1e-5), "Orthogonal init failed on a square matrix."
 | 
						|
        )
 | 
						|
 | 
						|
        # Test with a rectangular matrix: more rows than cols
 | 
						|
        shape = (6, 4)
 | 
						|
        result = initializer(mx.zeros(shape, dtype=mx.float32))
 | 
						|
        self.assertEqual(result.shape, shape)
 | 
						|
        self.assertEqual(result.dtype, mx.float32)
 | 
						|
 | 
						|
        I = result.T @ result
 | 
						|
        eye = mx.eye(shape[1], dtype=mx.float32)
 | 
						|
        self.assertTrue(
 | 
						|
            mx.allclose(I, eye, atol=1e-5),
 | 
						|
            "Orthogonal init failed on a rectangular matrix.",
 | 
						|
        )
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    mlx_tests.MLXTestRunner()
 |