mlx/python/tests/test_autograd.py
2023-12-08 11:31:47 -08:00

265 lines
9.1 KiB
Python

# Copyright © 2023 Apple Inc.
import unittest
import mlx.core as mx
import mlx_tests
class TestAutograd(mlx_tests.MLXTestCase):
def test_jvp(self):
fun = lambda x: 2 * x
out, dout = mx.jvp(fun, [mx.array(1.0)], [mx.array(2.0)])
self.assertEqual(out[0].item(), 2.0)
self.assertEqual(dout[0].item(), 4.0)
fun = lambda x, y: x * y
_, out = mx.jvp(
fun, [mx.array(4.0), mx.array(2.0)], [mx.array(3.0), mx.array(2.0)]
)
self.assertEqual(out[0].item(), 4.0 * 2.0 + 2.0 * 3.0)
fun = lambda x, y, z: (x * y, y * z)
_, out = mx.jvp(
fun,
[mx.array(2.0), mx.array(4.0), mx.array(6.0)],
[mx.array(1.0), mx.array(3.0), mx.array(1.0)],
)
self.assertEqual(len(out), 2)
self.assertEqual(out[0].item(), 4.0 * 1.0 + 2.0 * 3.0)
self.assertEqual(out[1].item(), 4.0 * 1.0 + 6.0 * 3.0)
def test_vjp(self):
fun = lambda x: 2 * x
out, dout = mx.vjp(fun, [mx.array(1.0)], [mx.array(2.0)])
self.assertEqual(out[0].item(), 2.0)
self.assertEqual(dout[0].item(), 4.0)
fun = lambda x, y: x * y
_, dout = mx.vjp(fun, [mx.array(4.0), mx.array(2.0)], [mx.array(3.0)])
self.assertEqual(dout[0].item(), 6.0)
self.assertEqual(dout[1].item(), 12.0)
fun = lambda x, y, z: (x * y, y * z)
_, out = mx.vjp(
fun,
[mx.array(2.0), mx.array(4.0), mx.array(6.0)],
[mx.array(1.0), mx.array(3.0)],
)
self.assertEqual(len(out), 3)
self.assertEqual(out[0].item(), 4.0 * 1.0)
self.assertEqual(out[1].item(), 2.0 * 1.0 + 6.0 * 3.0)
self.assertEqual(out[2].item(), 4.0 * 3.0)
def test_grad(self):
fun = lambda x: x * x
value, dfdx = mx.value_and_grad(fun)(mx.array(0.5))
self.assertEqual(value.item(), 0.25)
self.assertEqual(dfdx.item(), 1.0)
dfdx = mx.grad(fun)(mx.array(0.5))
self.assertEqual(dfdx.item(), 1.0)
df2dx2 = mx.grad(mx.grad(fun))(mx.array(0.5))
self.assertEqual(df2dx2.item(), 2.0)
df3dx3 = mx.grad(mx.grad(mx.grad(fun)))(mx.array(0.5))
self.assertEqual(df3dx3.item(), 0.0)
fun = lambda x, y: x * y
x = mx.array(2.0)
y = mx.array(3.0)
dfdx = mx.grad(fun, argnums=0)(x, y)
self.assertEqual(dfdx.item(), 3.0)
dfdx = mx.grad(fun, argnums=1)(x, y)
self.assertEqual(dfdx.item(), 2.0)
# Pass non array args to functions works
fun = lambda x, y: x
value, dfdx = mx.value_and_grad(fun)(mx.array(2.0), "hello")
self.assertEqual(value.item(), 2.0)
self.assertEqual(dfdx.item(), 1.0)
dfdx = mx.grad(fun)(mx.array(2.0), "hello")
self.assertEqual(dfdx.item(), 1.0)
# Raises when function does not return array
fun = lambda x: "hello"
with self.assertRaises(ValueError):
mx.grad(fun)(mx.array(2.0))
# Raises for invalid argument number or argument type
fun = lambda x: x
with self.assertRaises(ValueError):
mx.grad(fun, argnums=2)(mx.array(2.0))
with self.assertRaises(ValueError):
mx.grad(fun, argnums=-2)(mx.array(2.0))
with self.assertRaises(ValueError):
mx.grad(fun)("hello")
# Raises when output is not a scalar array
fun = lambda x: mx.sum(x, keepdims=True)
with self.assertRaises(ValueError):
mx.grad(fun)(mx.ones((2, 2)))
def test_grad_trees(self):
fun = lambda x, y: x * y
value, dfdx = mx.value_and_grad(fun, (0, 1))(mx.array(0.5), mx.array(2.0))
self.assertEqual(value.item(), 1.0)
self.assertTrue(isinstance(dfdx, tuple))
self.assertEqual(dfdx[0].item(), 2.0)
self.assertEqual(dfdx[1].item(), 0.5)
fun = lambda x, y: x * y
value, dfdx = mx.value_and_grad(fun, 1)(mx.array(0.5), mx.array(2.0))
self.assertEqual(value.item(), 1.0)
self.assertEqual(dfdx.item(), 0.5)
fun = lambda p: p["x"] * p["y"]
value, dfdx = mx.value_and_grad(fun)({"x": mx.array(0.5), "y": mx.array(2.0)})
self.assertEqual(value.item(), 1.0)
self.assertEqual(dfdx["x"].item(), 2.0)
self.assertEqual(dfdx["y"].item(), 0.5)
fun = lambda p: p["x"] * p["y"]
with self.assertRaises(ValueError):
mx.value_and_grad(fun)({"x": 0.5, "y": mx.array(2.0)})
with self.assertRaises(ValueError):
mx.value_and_grad(fun, (0, 1))({"x": mx.array(0.5), "y": mx.array(2.0)})
fun = lambda p, b: mx.square(p[0]["foo"][2]) * b
value, dfdx = mx.value_and_grad(fun)(
[{"foo": [[], [], mx.array(2.0)]}], mx.array(0.5)
)
self.assertEqual(value.item(), 2.0)
self.assertEqual(dfdx[0]["foo"][2].item(), 2.0)
fun = lambda x: x
with self.assertRaises(TypeError):
mx.value_and_grad(fun, (None, None))
with self.assertRaises(ValueError):
mx.value_and_grad(fun, tuple())
def test_auxiliary_values(self):
def fun(x, y):
l = (x * y).sum()
extra = {"loss": l, "foo": y.square() + x.square(), "bar": [1, 2, 3, y, x]}
return l, extra
fun_value_grad = mx.value_and_grad(fun)
fun_grad = mx.grad(fun)
(loss, a), b = fun_value_grad(mx.ones((2, 2)), mx.ones((2, 2)))
self.assertEqual(a["loss"].item(), 4)
self.assertTrue(mx.array_equal(b, mx.ones((2, 2))))
self.assertTrue(mx.array_equal(a["foo"], 2 * mx.ones((2, 2))))
self.assertEqual(a["bar"][:3], [1, 2, 3])
self.assertTrue(mx.array_equal(a["bar"][3], mx.ones((2, 2))))
self.assertTrue(mx.array_equal(a["bar"][4], mx.ones((2, 2))))
with self.assertRaises(ValueError):
_ = fun_grad(mx.ones((2, 2)), mx.ones((2, 2)))
def test_grad_kwargs(self):
fun = lambda x, y: x * y
a, b = mx.array(0.5), mx.array(2.0)
dfdx = mx.grad(fun)
self.assertEqual(dfdx(a, b).item(), 2.0)
self.assertEqual(dfdx(a, y=b).item(), 2.0)
with self.assertRaises(ValueError):
dfdx(x=a, y=b).item()
dfdy = mx.grad(fun, argnums=[], argnames=["y"])
with self.assertRaises(ValueError):
dfdy(a, b)
grads = dfdy(a, y=b)
self.assertTrue(isinstance(grads, tuple))
self.assertTrue(grads[0] is None)
self.assertTrue(isinstance(grads[1], dict))
self.assertEqual(grads[1]["y"].item(), 0.5)
grads = dfdy(x=a, y=b)
self.assertEqual(grads[1]["y"].item(), 0.5)
self.assertEqual(len(grads[1]), 1)
dfdxy = mx.grad(fun, argnums=[0], argnames=["y"])
with self.assertRaises(ValueError):
dfdxy(a, b)
with self.assertRaises(ValueError):
dfdxy(x=a, y=b)
grads = dfdxy(a, y=b)
self.assertTrue(isinstance(grads, tuple))
self.assertEqual(grads[0].item(), 2.0)
self.assertTrue(isinstance(grads[1], dict))
self.assertEqual(grads[1]["y"].item(), 0.5)
fun = lambda x, y, z: x * y * z
dfdxyz = mx.grad(fun, argnums=[0, 1], argnames=["z"])
c = mx.array(4.0)
grads = dfdxyz(a, b, z=c)
self.assertTrue(isinstance(grads, tuple))
self.assertTrue(isinstance(grads[0], tuple))
self.assertEqual(grads[0][0].item(), 8.0)
self.assertEqual(grads[0][1].item(), 2.0)
self.assertTrue(isinstance(grads[1], dict))
self.assertEqual(grads[1]["z"].item(), 1.0)
fun = lambda x, y: x * y
dfdy = mx.grad(fun, argnames=["y"])
grads = dfdy(a, y=b)
self.assertTrue(isinstance(grads, tuple))
self.assertTrue(grads[0] is None)
self.assertTrue(isinstance(grads[1], dict))
self.assertEqual(grads[1]["y"].item(), 0.5)
def test_captured(self):
a = mx.array(5.0)
f = lambda x: a + x
g = lambda x: a + a
h = lambda x: x + x
dfdx = mx.grad(f)
self.assertEqual(dfdx(a).item(), 1.0)
dgdx = mx.grad(g)
self.assertEqual(dgdx(a).item(), 0.0)
dhdx = mx.grad(h)
self.assertEqual(dhdx(a).item(), 2.0)
d2fdx2 = mx.grad(dfdx)
self.assertEqual(d2fdx2(a).item(), 0.0)
d2gdx2 = mx.grad(dgdx)
self.assertEqual(d2gdx2(a).item(), 0.0)
d2hdx2 = mx.grad(dhdx)
self.assertEqual(d2hdx2(a).item(), 0.0)
def test_stop_gradient(self):
shape_in = (4, 4)
w_in = mx.ones(shape_in)
x_in = mx.ones(shape_in)
cotan = mx.ones(shape_in)
def h(w, x):
x1 = 2 * x
y = mx.stop_gradient(x1)
y1 = 3 * y
return w @ y1
vals, vjps = mx.vjp(h, [w_in, x_in], [cotan])
mx.eval(vjps)
self.assertTrue(mx.allclose(vjps[0], 24.0 * mx.ones(shape_in)))
self.assertTrue(mx.allclose(vjps[1], mx.zeros(shape_in)))
g = lambda x: h(w_in, x)
vals, vjps = mx.vjp(g, [x_in], [cotan])
mx.eval(vjps)
self.assertTrue(mx.allclose(vjps[0], mx.zeros(shape_in)))
if __name__ == "__main__":
unittest.main()