mlx/examples/extensions/axpby/axpby.cpp
2023-11-30 11:12:53 -08:00

361 lines
12 KiB
C++

// Copyright © 2023 Apple Inc.
#include <cassert>
#include <iostream>
#include <sstream>
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/utils.h"
#include "mlx/utils.h"
#include "axpby/axpby.h"
#ifdef ACCELERATE_NEW_LAPACK
#include <vecLib/cblas_new.h>
#endif
#ifdef _METAL_
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/utils.h"
#endif
namespace mlx::core {
///////////////////////////////////////////////////////////////////////////////
// Operation Implementation
///////////////////////////////////////////////////////////////////////////////
/**
* Scale and sum two vectors elementwise
* z = alpha * x + beta * y
*
* Follow numpy style broadcasting between x and y
* Inputs are upcasted to floats if needed
**/
array axpby(
const array& x, // Input array x
const array& y, // Input array y
const float alpha, // Scaling factor for x
const float beta, // Scaling factor for y
StreamOrDevice s /* = {} */ // Stream on which to schedule the operation
) {
// Promote dtypes between x and y as needed
auto promoted_dtype = promote_types(x.dtype(), y.dtype());
// Upcast to float32 for non-floating point inputs x and y
auto out_dtype = is_floating_point(promoted_dtype)
? promoted_dtype
: promote_types(promoted_dtype, float32);
// Cast x and y up to the determined dtype (on the same stream s)
auto x_casted = astype(x, out_dtype, s);
auto y_casted = astype(y, out_dtype, s);
// Broadcast the shapes of x and y (on the same stream s)
auto broadcasted_inputs = broadcast_arrays({x_casted, y_casted}, s);
auto out_shape = broadcasted_inputs[0].shape();
// Construct the array as the output of the Axpby primitive
// with the broadcasted and upcasted arrays as inputs
return array(
/* const std::vector<int>& shape = */ out_shape,
/* Dtype dtype = */ out_dtype,
/* std::unique_ptr<Primitive> primitive = */
std::make_unique<Axpby>(to_stream(s), alpha, beta),
/* const std::vector<array>& inputs = */ broadcasted_inputs);
}
///////////////////////////////////////////////////////////////////////////////
// Primitive Common Backend Implementation
///////////////////////////////////////////////////////////////////////////////
template <typename T>
void axpby_impl(
const array& x,
const array& y,
array& out,
float alpha_,
float beta_) {
// We only allocate memory when we are ready to fill the output
// malloc_or_wait synchronously allocates available memory
// There may be a wait executed here if the allocation is requested
// under memory-pressured conditions
out.set_data(allocator::malloc_or_wait(out.nbytes()));
// Collect input and output data pointers
const T* x_ptr = x.data<T>();
const T* y_ptr = y.data<T>();
T* out_ptr = out.data<T>();
// Cast alpha and beta to the relevant types
T alpha = static_cast<T>(alpha_);
T beta = static_cast<T>(beta_);
// Do the elementwise operation for each output
for (size_t out_idx = 0; out_idx < out.size(); out_idx++) {
// Map linear indices to offsets in x and y
auto x_offset = elem_to_loc(out_idx, x.shape(), x.strides());
auto y_offset = elem_to_loc(out_idx, y.shape(), y.strides());
// We allocate the output to be contiguous and regularly strided
// (defaults to row major) and hence it doesn't need additonal mapping
out_ptr[out_idx] = alpha * x_ptr[x_offset] + beta * y_ptr[y_offset];
}
}
/** Fall back implementation for evaluation on CPU */
void Axpby::eval(const std::vector<array>& inputs, array& out) {
// Check the inputs (registered in the op while contructing the out array)
assert(inputs.size() == 2);
auto& x = inputs[0];
auto& y = inputs[1];
// Dispatch to the correct dtype
if (out.dtype() == float32) {
return axpby_impl<float>(x, y, out, alpha_, beta_);
} else if (out.dtype() == float16) {
return axpby_impl<float16_t>(x, y, out, alpha_, beta_);
} else if (out.dtype() == bfloat16) {
return axpby_impl<bfloat16_t>(x, y, out, alpha_, beta_);
} else if (out.dtype() == complex64) {
return axpby_impl<complex64_t>(x, y, out, alpha_, beta_);
} else {
throw std::runtime_error(
"Axpby is only supported for floating point types.");
}
}
///////////////////////////////////////////////////////////////////////////////
// Primitive Accelerate Backend Implementation
///////////////////////////////////////////////////////////////////////////////
#ifdef ACCELERATE_NEW_LAPACK
template <typename T>
void axpby_impl_accelerate(
const array& x,
const array& y,
array& out,
float alpha_,
float beta_) {
// Accelerate library provides catlas_saxpby which does
// Y = (alpha * X) + (beta * Y) in place
// To use it, we first copy the data in y over to the output array
// This specialization requires both x and y be contiguous in the same mode
// i.e: corresponding linear indices in both point to corresponding elements
// The data in the output array is allocated to match the strides in y
// such that x, y, and out are contiguous in the same mode and
// no transposition is needed
out.set_data(
allocator::malloc_or_wait(y.data_size() * out.itemsize()),
y.data_size(),
y.strides(),
y.flags());
// We then copy over the elements using the contiguous vector specialization
copy_inplace(y, out, CopyType::Vector);
// Get x and y pointers for catlas_saxpby
const T* x_ptr = x.data<T>();
T* y_ptr = out.data<T>();
T alpha = static_cast<T>(alpha_);
T beta = static_cast<T>(beta_);
// Call the inplace accelerate operator
catlas_saxpby(
/* N = */ out.size(),
/* ALPHA = */ alpha,
/* X = */ x_ptr,
/* INCX = */ 1,
/* BETA = */ beta,
/* Y = */ y_ptr,
/* INCY = */ 1);
}
/** Evaluate primitive on CPU using accelerate specializations */
void Axpby::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& x = inputs[0];
auto& y = inputs[1];
// Accelerate specialization for contiguous single precision float arrays
if (out.dtype() == float32 &&
((x.flags().row_contiguous && y.flags().row_contiguous) ||
(x.flags().col_contiguous && y.flags().col_contiguous))) {
axpby_impl_accelerate<float>(x, y, out, alpha_, beta_);
return;
}
// Fall back to common backend if specializations are not available
eval(inputs, out);
}
#else // Accelerate not avaliable
/** Evaluate primitive on CPU falling back to common backend */
void Axpby::eval_cpu(const std::vector<array>& inputs, array& out) {
eval(inputs, out);
}
#endif
///////////////////////////////////////////////////////////////////////////////
// Primitive Metal Backend Implementation
///////////////////////////////////////////////////////////////////////////////
#ifdef _METAL_
/** Evaluate primitive on GPU */
void Axpby::eval_gpu(const std::vector<array>& inputs, array& out) {
// Prepare inputs
assert(inputs.size() == 2);
auto& x = inputs[0];
auto& y = inputs[1];
// Each primitive carries the stream it should execute on
// and each stream carries its device identifiers
auto& s = stream();
// We get the needed metal device using the stream
auto& d = metal::device(s.device);
// Prepare to specialize based on contiguity
bool contiguous_kernel =
(x.flags().row_contiguous && y.flags().row_contiguous) ||
(x.flags().col_contiguous && y.flags().col_contiguous);
// Allocate output memory with strides based on specialization
if (contiguous_kernel) {
out.set_data(
allocator::malloc_or_wait(x.data_size() * out.itemsize()),
x.data_size(),
x.strides(),
x.flags());
} else {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
}
// Resolve name of kernel (corresponds to axpby.metal)
std::ostringstream kname;
kname << "axpby_";
kname << (contiguous_kernel ? "contiguous_" : "general_");
kname << type_to_name(out);
// Make sure the metal library is available and look for it
// in the same folder as this executable if needed
d.register_library("mlx_ext", metal::get_colocated_mtllib_path);
// Make a kernel from this metal library
auto kernel = d.get_kernel(kname.str(), "mlx_ext");
// Prepare to encode kernel
auto compute_encoder = d.get_command_encoder(s.index);
compute_encoder->setComputePipelineState(kernel);
// Kernel parameters are registered with buffer indices corresponding to
// those in the kernel decelaration at axpby.metal
int ndim = out.ndim();
size_t nelem = out.size();
// Encode input arrays to kernel
set_array_buffer(compute_encoder, x, 0);
set_array_buffer(compute_encoder, y, 1);
// Encode output arrays to kernel
set_array_buffer(compute_encoder, out, 2);
// Encode alpha and beta
compute_encoder->setBytes(&alpha_, sizeof(float), 3);
compute_encoder->setBytes(&beta_, sizeof(float), 4);
// Encode shape, strides and ndim if needed
if (!contiguous_kernel) {
compute_encoder->setBytes(x.shape().data(), ndim * sizeof(int), 5);
compute_encoder->setBytes(x.strides().data(), ndim * sizeof(size_t), 6);
compute_encoder->setBytes(y.strides().data(), ndim * sizeof(size_t), 7);
compute_encoder->setBytes(&ndim, sizeof(int), 8);
}
// We launch 1 thread for each input and make sure that the number of
// threads in any given threadgroup is not higher than the max allowed
size_t tgp_size = std::min(nelem, kernel->maxTotalThreadsPerThreadgroup());
// Fix the 3D size of each threadgroup (in terms of threads)
MTL::Size group_dims = MTL::Size(tgp_size, 1, 1);
// Fix the 3D size of the launch grid (in terms of threads)
MTL::Size grid_dims = MTL::Size(nelem, 1, 1);
// Launch the grid with the given number of threads divded among
// the given threadgroups
compute_encoder->dispatchThreads(grid_dims, group_dims);
}
#else // Metal is not available
/** Fail evaluation on GPU */
void Axpby::eval_gpu(const std::vector<array>& inputs, array& out) {
throw std::runtime_error("Axpby has no GPU implementation.");
}
#endif
///////////////////////////////////////////////////////////////////////////////
// Primitive Transforms
///////////////////////////////////////////////////////////////////////////////
/** The Jacobian-vector product. */
array Axpby::jvp(
const std::vector<array>& primals,
const std::vector<array>& tangents,
const std::vector<int>& argnums) {
// Forward mode diff that pushes along the tangents
// The jvp transform on the the primitive can built with ops
// that are scheduled on the same stream as the primtive
// If argnums = {0}, we only push along x in which case the
// jvp is just the tangent scaled by alpha
// Similarly, if argnums = {1}, the jvp is just the tangent
// scaled by beta
if (argnums.size() > 1) {
auto scale = argnums[0] == 0 ? alpha_ : beta_;
auto scale_arr = array(scale, tangents[0].dtype());
return multiply(scale_arr, tangents[0], stream());
}
// If, argnums = {0, 1}, we take contributions from both
// which gives us jvp = tangent_x * alpha + tangent_y * beta
else {
return axpby(tangents[0], tangents[1], alpha_, beta_, stream());
}
}
/** The vector-Jacobian product. */
std::vector<array> Axpby::vjp(
const std::vector<array>& primals,
const array& cotan,
const std::vector<int>& argnums) {
// Reverse mode diff
std::vector<array> vjps;
for (auto arg : argnums) {
auto scale = arg == 0 ? alpha_ : beta_;
auto scale_arr = array(scale, cotan.dtype());
vjps.push_back(multiply(scale_arr, cotan, stream()));
}
return vjps;
}
/** Vectorize primitve along given axis */
std::pair<array, int> Axpby::vmap(
const std::vector<array>& inputs,
const std::vector<int>& axes) {
throw std::runtime_error("Axpby has no vmap implementation.");
}
/** Equivalence check **/
bool Axpby::is_equivalent(const Primitive& other) const {
const Axpby& r_other = static_cast<const Axpby&>(other);
return alpha_ == r_other.alpha_ && beta_ == r_other.beta_;
}
} // namespace mlx::core