mlx/mlx/backend/metal/primitives.cpp
Cheng 4822c3dbe9
[CUDA] Implement DynamicSlice/DynamicSliceUpdate (#2533)
* Move DynamicSlice to gpu/primitives

* Implement compute_dynamic_offset in CUDA
2025-08-26 07:31:39 +09:00

244 lines
7.9 KiB
C++

// Copyright © 2023-2024 Apple Inc.
#include <algorithm>
#include <cassert>
#include <numeric>
#include <sstream>
#include "mlx/backend/common/slicing.h"
#include "mlx/backend/common/utils.h"
#include "mlx/backend/gpu/copy.h"
#include "mlx/backend/gpu/slicing.h"
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/kernels.h"
#include "mlx/backend/metal/utils.h"
#include "mlx/primitives.h"
#include "mlx/scheduler.h"
#include "mlx/utils.h"
namespace mlx::core {
template <typename T>
void arange_set_scalars(T start, T next, metal::CommandEncoder& enc) {
enc.set_bytes(start, 0);
T step = next - start;
enc.set_bytes(step, 1);
}
void Arange::eval_gpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 0);
out.set_data(allocator::malloc(out.nbytes()));
if (out.size() == 0) {
return;
}
auto& s = stream();
auto& d = metal::device(s.device);
auto kernel = get_arange_kernel(d, "arange" + type_to_name(out), out);
size_t nthreads = out.size();
MTL::Size grid_dims = MTL::Size(nthreads, 1, 1);
MTL::Size group_dims = MTL::Size(
std::min(nthreads, kernel->maxTotalThreadsPerThreadgroup()), 1, 1);
auto& compute_encoder = d.get_command_encoder(s.index);
compute_encoder.set_compute_pipeline_state(kernel);
switch (out.dtype()) {
case bool_: // unsupported
throw std::runtime_error("[Arange::eval_gpu] Does not support bool");
case uint8:
arange_set_scalars<uint8_t>(start_, start_ + step_, compute_encoder);
break;
case uint16:
arange_set_scalars<uint16_t>(start_, start_ + step_, compute_encoder);
break;
case uint32:
arange_set_scalars<uint32_t>(start_, start_ + step_, compute_encoder);
break;
case uint64:
arange_set_scalars<uint64_t>(start_, start_ + step_, compute_encoder);
break;
case int8:
arange_set_scalars<int8_t>(start_, start_ + step_, compute_encoder);
break;
case int16:
arange_set_scalars<int16_t>(start_, start_ + step_, compute_encoder);
break;
case int32:
arange_set_scalars<int32_t>(start_, start_ + step_, compute_encoder);
break;
case int64:
arange_set_scalars<int64_t>(start_, start_ + step_, compute_encoder);
break;
case float16:
arange_set_scalars<float16_t>(start_, start_ + step_, compute_encoder);
break;
case float32:
arange_set_scalars<float>(start_, start_ + step_, compute_encoder);
break;
case bfloat16:
arange_set_scalars<bfloat16_t>(start_, start_ + step_, compute_encoder);
break;
default:
throw std::runtime_error("[Arange::eval_gpu] Does not support type.");
}
compute_encoder.set_output_array(out, 2);
compute_encoder.dispatch_threads(grid_dims, group_dims);
}
void ArgReduce::eval_gpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
out.set_data(allocator::malloc(out.nbytes()));
auto& s = stream();
auto& d = metal::device(s.device);
std::string op_name;
switch (reduce_type_) {
case ArgReduce::ArgMin:
op_name = "argmin_";
break;
case ArgReduce::ArgMax:
op_name = "argmax_";
break;
}
// Prepare the shapes, strides and axis arguments.
auto in_strides = in.strides();
auto shape = in.shape();
auto out_strides = out.strides();
auto axis_stride = in_strides[axis_];
size_t axis_size = shape[axis_];
if (out_strides.size() == in_strides.size()) {
out_strides.erase(out_strides.begin() + axis_);
}
in_strides.erase(in_strides.begin() + axis_);
shape.erase(shape.begin() + axis_);
size_t ndim = shape.size();
// ArgReduce
int simd_size = 32;
int n_reads = 4;
auto& compute_encoder = d.get_command_encoder(s.index);
{
auto kernel = d.get_kernel(op_name + type_to_name(in));
NS::UInteger thread_group_size = std::min(
(axis_size + n_reads - 1) / n_reads,
kernel->maxTotalThreadsPerThreadgroup());
// round up to the closest number divisible by simd_size
thread_group_size =
(thread_group_size + simd_size - 1) / simd_size * simd_size;
assert(thread_group_size <= kernel->maxTotalThreadsPerThreadgroup());
auto gd = get_2d_grid_dims(out.shape(), out.strides());
MTL::Size grid_dims = MTL::Size(thread_group_size, gd.width, gd.height);
MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1);
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(in, 0);
compute_encoder.set_output_array(out, 1);
if (ndim == 0) {
// Pass place holders so metal doesn't complain
int shape_ = 0;
int64_t stride_ = 0;
compute_encoder.set_bytes(shape_, 2);
compute_encoder.set_bytes(stride_, 3);
compute_encoder.set_bytes(stride_, 4);
} else {
compute_encoder.set_vector_bytes(shape, 2);
compute_encoder.set_vector_bytes(in_strides, 3);
compute_encoder.set_vector_bytes(out_strides, 4);
}
compute_encoder.set_bytes(ndim, 5);
compute_encoder.set_bytes(axis_stride, 6);
compute_encoder.set_bytes(axis_size, 7);
compute_encoder.dispatch_threads(grid_dims, group_dims);
}
}
void Load::eval_gpu(const std::vector<array>& inputs, array& out) {
throw std::runtime_error("[Load::eval_gpu] Not implemented.");
}
void RandomBits::eval_gpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
// keys has shape (N1, ..., NK, 2)
// out has shape (N1, ..., NK, M1, M2, ...)
auto& keys = inputs[0];
size_t num_keys = keys.size() / 2;
size_t elems_per_key = out.size() / num_keys;
size_t bytes_per_key = out.itemsize() * elems_per_key;
out.set_data(allocator::malloc(out.nbytes()));
if (out.size() == 0) {
return;
}
size_t out_per_key = (bytes_per_key + 4 - 1) / 4;
size_t half_size = out_per_key / 2;
bool odd = out_per_key % 2;
auto& s = stream();
auto& d = metal::device(s.device);
std::string kname = keys.flags().row_contiguous ? "rbitsc" : "rbits";
auto kernel = d.get_kernel(kname);
// organize into grid nkeys x elem_per_key
MTL::Size grid_dims = MTL::Size(num_keys, half_size + odd, 1);
NS::UInteger thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
auto group_dims = get_block_dims(num_keys, half_size + odd, 1);
auto& compute_encoder = d.get_command_encoder(s.index);
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(keys, 0);
compute_encoder.set_output_array(out, 1);
compute_encoder.set_bytes(odd, 2);
compute_encoder.set_bytes(bytes_per_key, 3);
if (!keys.flags().row_contiguous) {
int ndim = keys.ndim();
compute_encoder.set_bytes(ndim, 4);
compute_encoder.set_vector_bytes(keys.shape(), 5);
compute_encoder.set_vector_bytes(keys.strides(), 6);
}
compute_encoder.dispatch_threads(grid_dims, group_dims);
}
void QRF::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
throw std::runtime_error("[QRF::eval_gpu] Metal QR factorization NYI.");
}
void SVD::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
throw std::runtime_error("[SVD::eval_gpu] Metal SVD NYI.");
}
void Inverse::eval_gpu(const std::vector<array>& inputs, array& output) {
throw std::runtime_error("[Inverse::eval_gpu] Metal inversion NYI.");
}
void Cholesky::eval_gpu(const std::vector<array>& inputs, array& out) {
throw std::runtime_error(
"[Cholesky::eval_gpu] Metal Cholesky decomposition NYI.");
}
void Eig::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
throw std::runtime_error("[Eig::eval_gpu] Metal Eig NYI.");
}
void Eigh::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
throw std::runtime_error("[Eigh::eval_gpu] Metal Eigh NYI.");
}
void LUF::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
throw std::runtime_error("[LUF::eval_gpu] Metal LU factorization NYI.");
}
} // namespace mlx::core