mirror of
https://github.com/ml-explore/mlx.git
synced 2025-07-27 11:31:21 +08:00

* initial implementation for conv_transpose ran pre-commit implemented conv_transpose updated conv_general docstring updated conv_general docstring updated code comments removed commented run_conv_checks updated acknowledgments added missing entry to ops.rst added op to nn.layers resolved merge conflicts * removed ConvolutionTranspose primitive as suggested by reviewer removed ConvolutionTranspose primitive as suggested by reviewer * remove transpose flag, add another test --------- Co-authored-by: Awni Hannun <awni@apple.com>
207 lines
6.6 KiB
Python
207 lines
6.6 KiB
Python
# Copyright © 2023 Apple Inc.
|
|
|
|
import math
|
|
from typing import Union
|
|
|
|
import mlx.core as mx
|
|
from mlx.nn.layers.base import Module
|
|
|
|
|
|
class ConvTranspose1d(Module):
|
|
"""Applies a 1-dimensional transposed convolution over the multi-channel input sequence.
|
|
|
|
The channels are expected to be last i.e. the input shape should be ``NLC`` where:
|
|
|
|
* ``N`` is the batch dimension
|
|
* ``L`` is the sequence length
|
|
* ``C`` is the number of input channels
|
|
|
|
Args:
|
|
in_channels (int): The number of input channels
|
|
out_channels (int): The number of output channels
|
|
kernel_size (int): The size of the convolution filters
|
|
stride (int, optional): The stride when applying the filter.
|
|
Default: ``1``.
|
|
padding (int, optional): How many positions to 0-pad the input with.
|
|
Default: ``0``.
|
|
dilation (int, optional): The dilation of the convolution.
|
|
bias (bool, optional): If ``True`` add a learnable bias to the output.
|
|
Default: ``True``
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
kernel_size: int,
|
|
stride: int = 1,
|
|
padding: int = 0,
|
|
dilation: int = 1,
|
|
bias: bool = True,
|
|
):
|
|
super().__init__()
|
|
|
|
scale = math.sqrt(1 / (in_channels * kernel_size))
|
|
self.weight = mx.random.uniform(
|
|
low=-scale,
|
|
high=scale,
|
|
shape=(out_channels, kernel_size, in_channels),
|
|
)
|
|
if bias:
|
|
self.bias = mx.zeros((out_channels,))
|
|
|
|
self.padding = padding
|
|
self.dilation = dilation
|
|
self.stride = stride
|
|
|
|
def _extra_repr(self):
|
|
return (
|
|
f"{self.weight.shape[-1]}, {self.weight.shape[0]}, "
|
|
f"kernel_size={self.weight.shape[1]}, stride={self.stride}, "
|
|
f"padding={self.padding}, dilation={self.dilation}, "
|
|
f"bias={'bias' in self}"
|
|
)
|
|
|
|
def __call__(self, x):
|
|
y = mx.conv_transpose1d(
|
|
x, self.weight, self.stride, self.padding, self.dilation
|
|
)
|
|
if "bias" in self:
|
|
y = y + self.bias
|
|
return y
|
|
|
|
|
|
class ConvTranspose2d(Module):
|
|
"""Applies a 2-dimensional transposed convolution over the multi-channel input image.
|
|
|
|
The channels are expected to be last i.e. the input shape should be ``NHWC`` where:
|
|
|
|
* ``N`` is the batch dimension
|
|
* ``H`` is the input image height
|
|
* ``W`` is the input image width
|
|
* ``C`` is the number of input channels
|
|
|
|
Args:
|
|
in_channels (int): The number of input channels.
|
|
out_channels (int): The number of output channels.
|
|
kernel_size (int or tuple): The size of the convolution filters.
|
|
stride (int or tuple, optional): The size of the stride when
|
|
applying the filter. Default: ``1``.
|
|
padding (int or tuple, optional): How many positions to 0-pad
|
|
the input with. Default: ``0``.
|
|
dilation (int or tuple, optional): The dilation of the convolution.
|
|
bias (bool, optional): If ``True`` add a learnable bias to the
|
|
output. Default: ``True``
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
kernel_size: Union[int, tuple],
|
|
stride: Union[int, tuple] = 1,
|
|
padding: Union[int, tuple] = 0,
|
|
dilation: Union[int, tuple] = 1,
|
|
bias: bool = True,
|
|
):
|
|
super().__init__()
|
|
|
|
kernel_size, stride, padding = map(
|
|
lambda x: (x, x) if isinstance(x, int) else x,
|
|
(kernel_size, stride, padding),
|
|
)
|
|
scale = math.sqrt(1 / (in_channels * kernel_size[0] * kernel_size[1]))
|
|
self.weight = mx.random.uniform(
|
|
low=-scale,
|
|
high=scale,
|
|
shape=(out_channels, *kernel_size, in_channels),
|
|
)
|
|
if bias:
|
|
self.bias = mx.zeros((out_channels,))
|
|
|
|
self.padding = padding
|
|
self.stride = stride
|
|
self.dilation = dilation
|
|
|
|
def _extra_repr(self):
|
|
return (
|
|
f"{self.weight.shape[-1]}, {self.weight.shape[0]}, "
|
|
f"kernel_size={self.weight.shape[1:2]}, stride={self.stride}, "
|
|
f"padding={self.padding}, dilation={self.dilation}, "
|
|
f"bias={'bias' in self}"
|
|
)
|
|
|
|
def __call__(self, x):
|
|
y = mx.conv_transpose2d(
|
|
x, self.weight, self.stride, self.padding, self.dilation
|
|
)
|
|
if "bias" in self:
|
|
y = y + self.bias
|
|
return y
|
|
|
|
|
|
class ConvTranspose3d(Module):
|
|
"""Applies a 3-dimensional transposed convolution over the multi-channel input image.
|
|
|
|
The channels are expected to be last i.e. the input shape should be ``NDHWC`` where:
|
|
|
|
* ``N`` is the batch dimension
|
|
* ``D`` is the input image depth
|
|
* ``H`` is the input image height
|
|
* ``W`` is the input image width
|
|
* ``C`` is the number of input channels
|
|
|
|
Args:
|
|
in_channels (int): The number of input channels.
|
|
out_channels (int): The number of output channels.
|
|
kernel_size (int or tuple): The size of the convolution filters.
|
|
stride (int or tuple, optional): The size of the stride when
|
|
applying the filter. Default: ``1``.
|
|
padding (int or tuple, optional): How many positions to 0-pad
|
|
the input with. Default: ``0``.
|
|
bias (bool, optional): If ``True`` add a learnable bias to the
|
|
output. Default: ``True``
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
kernel_size: Union[int, tuple],
|
|
stride: Union[int, tuple] = 1,
|
|
padding: Union[int, tuple] = 0,
|
|
bias: bool = True,
|
|
):
|
|
super().__init__()
|
|
|
|
kernel_size, stride, padding = map(
|
|
lambda x: (x, x, x) if isinstance(x, int) else x,
|
|
(kernel_size, stride, padding),
|
|
)
|
|
scale = math.sqrt(
|
|
1 / (in_channels * kernel_size[0] * kernel_size[1] * kernel_size[2])
|
|
)
|
|
self.weight = mx.random.uniform(
|
|
low=-scale,
|
|
high=scale,
|
|
shape=(out_channels, *kernel_size, in_channels),
|
|
)
|
|
if bias:
|
|
self.bias = mx.zeros((out_channels,))
|
|
|
|
self.padding = padding
|
|
self.stride = stride
|
|
|
|
def _extra_repr(self):
|
|
return (
|
|
f"{self.weight.shape[-1]}, {self.weight.shape[0]}, "
|
|
f"kernel_size={self.weight.shape[1:3]}, stride={self.stride}, "
|
|
f"padding={self.padding}, bias={'bias' in self}"
|
|
)
|
|
|
|
def __call__(self, x):
|
|
y = mx.conv_transpose3d(x, self.weight, self.stride, self.padding)
|
|
if "bias" in self:
|
|
y = y + self.bias
|
|
return y
|