mlx/docs/src/install.rst
Awni Hannun 76831ed83d
Build CUDA release in Circle (#2306)
* cuda release

* add license
2025-06-19 15:26:36 -07:00

329 lines
7.9 KiB
ReStructuredText

.. _build_and_install:
Build and Install
=================
Python Installation
-------------------
MLX is available on PyPI. All you have to do to use MLX with your own Apple
silicon computer is
.. code-block:: shell
pip install mlx
To install from PyPI you must meet the following requirements:
- Using an M series chip (Apple silicon)
- Using a native Python >= 3.9
- macOS >= 13.5
.. note::
MLX is only available on devices running macOS >= 13.5
It is highly recommended to use macOS 14 (Sonoma)
MLX is also available on conda-forge. To install MLX with conda do:
.. code-block:: shell
conda install conda-forge::mlx
CUDA
^^^^
MLX has a CUDA backend which you can use on any Linux platform with CUDA 12
and SM 7.0 (Volta) and up. To install MLX with CUDA support, run:
.. code-block:: shell
pip install mlx-cuda
Troubleshooting
^^^^^^^^^^^^^^^
*My OS and Python versions are in the required range but pip still does not find
a matching distribution.*
Probably you are using a non-native Python. The output of
.. code-block:: shell
python -c "import platform; print(platform.processor())"
should be ``arm``. If it is ``i386`` (and you have M series machine) then you
are using a non-native Python. Switch your Python to a native Python. A good
way to do this is with `Conda <https://stackoverflow.com/q/65415996>`_.
Build from source
-----------------
Build Requirements
^^^^^^^^^^^^^^^^^^
- A C++ compiler with C++17 support (e.g. Clang >= 5.0)
- `cmake <https://cmake.org/>`_ -- version 3.25 or later, and ``make``
- Xcode >= 15.0 and macOS SDK >= 14.0
.. note::
Ensure your shell environment is native ``arm``, not ``x86`` via Rosetta. If
the output of ``uname -p`` is ``x86``, see the :ref:`troubleshooting section <build shell>` below.
Python API
^^^^^^^^^^
.. _python install:
To build and install the MLX python library from source, first, clone MLX from
`its GitHub repo <https://github.com/ml-explore/mlx>`_:
.. code-block:: shell
git clone git@github.com:ml-explore/mlx.git mlx && cd mlx
Then simply build and install MLX using pip:
.. code-block:: shell
CMAKE_BUILD_PARALLEL_LEVEL=8 pip install .
For developing, install the package with development dependencies, and use an
editable install:
.. code-block:: shell
CMAKE_BUILD_PARALLEL_LEVEL=8 pip install -e ".[dev]"
Once the development dependencies are installed, you can build faster with:
.. code-block:: shell
CMAKE_BUILD_PARALLEL_LEVEL=8 python setup.py build_ext --inplace
Run the tests with:
.. code-block:: shell
python -m unittest discover python/tests
Optional: Install stubs to enable auto completions and type checking from your
IDE:
.. code-block:: shell
python setup.py generate_stubs
C++ API
^^^^^^^
.. _cpp install:
Currently, MLX must be built and installed from source.
Similarly to the python library, to build and install the MLX C++ library start
by cloning MLX from `its GitHub repo
<https://github.com/ml-explore/mlx>`_:
.. code-block:: shell
git clone git@github.com:ml-explore/mlx.git mlx && cd mlx
Create a build directory and run CMake and make:
.. code-block:: shell
mkdir -p build && cd build
cmake .. && make -j
Run tests with:
.. code-block:: shell
make test
Install with:
.. code-block:: shell
make install
Note that the built ``mlx.metallib`` file should be either at the same
directory as the executable statically linked to ``libmlx.a`` or the
preprocessor constant ``METAL_PATH`` should be defined at build time and it
should point to the path to the built metal library.
.. list-table:: Build Options
:widths: 25 8
:header-rows: 1
* - Option
- Default
* - MLX_BUILD_TESTS
- ON
* - MLX_BUILD_EXAMPLES
- OFF
* - MLX_BUILD_BENCHMARKS
- OFF
* - MLX_BUILD_METAL
- ON
* - MLX_BUILD_CPU
- ON
* - MLX_BUILD_PYTHON_BINDINGS
- OFF
* - MLX_METAL_DEBUG
- OFF
* - MLX_BUILD_SAFETENSORS
- ON
* - MLX_BUILD_GGUF
- ON
* - MLX_METAL_JIT
- OFF
.. note::
If you have multiple Xcode installations and wish to use
a specific one while building, you can do so by adding the
following environment variable before building
.. code-block:: shell
export DEVELOPER_DIR="/path/to/Xcode.app/Contents/Developer/"
Further, you can use the following command to find out which
macOS SDK will be used
.. code-block:: shell
xcrun -sdk macosx --show-sdk-version
Binary Size Minimization
~~~~~~~~~~~~~~~~~~~~~~~~
To produce a smaller binary use the CMake flags ``CMAKE_BUILD_TYPE=MinSizeRel``
and ``BUILD_SHARED_LIBS=ON``.
The MLX CMake build has several additional options to make smaller binaries.
For example, if you don't need the CPU backend or support for safetensors and
GGUF, you can do:
.. code-block:: shell
cmake .. \
-DCMAKE_BUILD_TYPE=MinSizeRel \
-DBUILD_SHARED_LIBS=ON \
-DMLX_BUILD_CPU=OFF \
-DMLX_BUILD_SAFETENSORS=OFF \
-DMLX_BUILD_GGUF=OFF \
-DMLX_METAL_JIT=ON
THE ``MLX_METAL_JIT`` flag minimizes the size of the MLX Metal library which
contains pre-built GPU kernels. This substantially reduces the size of the
Metal library by run-time compiling kernels the first time they are used in MLX
on a given machine. Note run-time compilation incurs a cold-start cost which can
be anwywhere from a few hundred millisecond to a few seconds depending on the
application. Once a kernel is compiled, it will be cached by the system. The
Metal kernel cache persists across reboots.
Linux
^^^^^
To build from source on Linux (CPU only), install the BLAS and LAPACK headers.
For example on Ubuntu, run the following:
.. code-block:: shell
apt-get update -y
apt-get install libblas-dev liblapack-dev liblapacke-dev -y
From here follow the instructions to install either the :ref:`Python <python
install>` or :ref:`C++ <cpp install>` APIs.
CUDA
^^^^
To build from source on Linux with CUDA, install the BLAS and LAPACK headers
and the CUDA toolkit. For example on Ubuntu, run the following:
.. code-block:: shell
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
dpkg -i cuda-keyring_1.1-1_all.deb
apt-get update -y
apt-get -y install cuda-toolkit-12-9
apt-get install libblas-dev liblapack-dev liblapacke-dev -y
When building either the Python or C++ APIs make sure to pass the cmake flag
``MLX_BUILD_CUDA=ON``. For example, to build the Python API run:
.. code-block:: shell
CMAKE_BUILD_PARALLEL_LEVEL=8 CMAKE_ARGS="-DMLX_BUILD_CUDA=ON" pip install -e ".[dev]"
To build the C++ package run:
.. code-block:: shell
mkdir -p build && cd build
cmake .. -DMLX_BUILD_CUDA=ON && make -j
Troubleshooting
^^^^^^^^^^^^^^^
Metal not found
~~~~~~~~~~~~~~~
You see the following error when you try to build:
.. code-block:: shell
error: unable to find utility "metal", not a developer tool or in PATH
To fix this, first make sure you have Xcode installed:
.. code-block:: shell
xcode-select --install
Then set the active developer directory:
.. code-block:: shell
sudo xcode-select --switch /Applications/Xcode.app/Contents/Developer
x86 Shell
~~~~~~~~~
.. _build shell:
If the output of ``uname -p`` is ``x86`` then your shell is running as x86 via
Rosetta instead of natively.
To fix this, find the application in Finder (``/Applications`` for iTerm,
``/Applications/Utilities`` for Terminal), right-click, and click “Get Info”.
Uncheck “Open using Rosetta”, close the “Get Info” window, and restart your
terminal.
Verify the terminal is now running natively the following command:
.. code-block:: shell
$ uname -p
arm
Also check that cmake is using the correct architecture:
.. code-block:: shell
$ cmake --system-information | grep CMAKE_HOST_SYSTEM_PROCESSOR
CMAKE_HOST_SYSTEM_PROCESSOR "arm64"
If you see ``"x86_64"``, try re-installing ``cmake``. If you see ``"arm64"``
but the build errors out with "Building for x86_64 on macOS is not supported."
wipe your build cache with ``rm -rf build/`` and try again.