mlx/mlx/backend/cuda/device.cpp
Awni Hannun 76831ed83d
Build CUDA release in Circle (#2306)
* cuda release

* add license
2025-06-19 15:26:36 -07:00

141 lines
3.5 KiB
C++

// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/worker.h"
#include "mlx/backend/metal/metal.h"
#include <fmt/format.h>
#include <nvtx3/nvtx3.hpp>
#include <future>
namespace mlx::core {
namespace cu {
DeviceStream::DeviceStream(Device& device) : device_(device), stream_(device) {}
void DeviceStream::synchronize() {
cudaStreamSynchronize(stream_);
}
cudaStream_t DeviceStream::schedule_cuda_stream() {
// TODO: Return a stream that maximizes parallelism.
return stream_;
}
cudaStream_t DeviceStream::last_cuda_stream() {
return stream_;
}
CommandEncoder& DeviceStream::get_encoder() {
if (!encoder_) {
encoder_ = std::make_unique<CommandEncoder>(*this);
}
return *encoder_;
}
Device::Device(int device) : device_(device) {
CHECK_CUDA_ERROR(cudaDeviceGetAttribute(
&compute_capability_major_, cudaDevAttrComputeCapabilityMajor, device_));
CHECK_CUDA_ERROR(cudaDeviceGetAttribute(
&compute_capability_minor_, cudaDevAttrComputeCapabilityMinor, device_));
// Validate the requirements of device.
int attr = 0;
CHECK_CUDA_ERROR(cudaDeviceGetAttribute(
&attr, cudaDevAttrConcurrentManagedAccess, device_));
if (attr != 1) {
throw std::runtime_error(fmt::format(
"Device {} does not support synchronization in managed memory.",
device_));
}
// The cublasLt handle is used by matmul.
make_current();
cublasLtCreate(&lt_);
}
Device::~Device() {
cublasLtDestroy(lt_);
}
void Device::make_current() {
// We need to set/get current CUDA device very frequently, cache it to reduce
// actual calls of CUDA APIs. This function assumes single-thread in host.
static int current = 0;
if (current != device_) {
CHECK_CUDA_ERROR(cudaSetDevice(device_));
current = device_;
}
}
DeviceStream& Device::get_stream(Stream s) {
auto it = streams_.find(s.index);
if (it == streams_.end()) {
it = streams_.try_emplace(s.index, *this).first;
}
return it->second;
}
CommandEncoder::CommandEncoder(DeviceStream& s)
: device_(s.device()), stream_(s) {}
void CommandEncoder::add_completed_handler(std::function<void()> task) {
worker_.add_task(std::move(task));
}
void CommandEncoder::end_encoding() {
if (!temporaries_.empty()) {
add_completed_handler([temporaries = std::move(temporaries_)]() {});
}
// There is no kernel running, run completion handlers immediately.
if (!has_gpu_work_) {
worker_.consume_in_this_thread();
return;
}
has_gpu_work_ = false;
// Put completion handlers in a batch.
worker_.end_batch();
// Signaling kernel completion is expensive, delay until enough batches.
// TODO: This number is arbitrarily picked, profile for a better stragety.
if (worker_.uncommited_batches() > 8) {
commit();
}
}
void CommandEncoder::commit() {
worker_.commit(stream_.last_cuda_stream());
}
void CommandEncoder::synchronize() {
stream().synchronize();
auto p = std::make_shared<std::promise<void>>();
std::future<void> f = p->get_future();
add_completed_handler([p = std::move(p)]() { p->set_value(); });
worker_.end_batch();
commit();
f.wait();
}
Device& device(mlx::core::Device device) {
static std::unordered_map<int, Device> devices;
auto it = devices.find(device.index);
if (it == devices.end()) {
it = devices.try_emplace(device.index, device.index).first;
}
return it->second;
}
DeviceStream& get_stream(Stream s) {
return device(s.device).get_stream(s);
}
CommandEncoder& get_command_encoder(Stream s) {
return get_stream(s).get_encoder();
}
} // namespace cu
} // namespace mlx::core