mlx/examples/cpp/tutorial.cpp
Cheng 4f9b60dd53
Remove "using namespace mlx::core" in benchmarks/examples (#1685)
* Remove "using namespace mlx::core" in benchmarks/examples

* Fix building example extension

* A missing one in comment

* Fix building on M chips
2024-12-11 07:08:29 -08:00

100 lines
2.7 KiB
C++

// Copyright © 2023 Apple Inc.
#include <cassert>
#include <iostream>
#include "mlx/mlx.h"
namespace mx = mlx::core;
void array_basics() {
// Make a scalar array:
mx::array x(1.0);
// Get the value out of it:
auto s = x.item<float>();
assert(s == 1.0);
// Scalars have a size of 1:
size_t size = x.size();
assert(size == 1);
// Scalars have 0 dimensions:
int ndim = x.ndim();
assert(ndim == 0);
// The shape should be an empty vector:
auto shape = x.shape();
assert(shape.empty());
// The datatype should be float32:
auto dtype = x.dtype();
assert(dtype == mx::float32);
// Specify the dtype when constructing the array:
x = mx::array(1, mx::int32);
assert(x.dtype() == mx::int32);
x.item<int>(); // OK
// x.item<float>(); // Undefined!
// Make a multidimensional array:
x = mx::array({1.0f, 2.0f, 3.0f, 4.0f}, {2, 2});
// mlx is row-major by default so the first row of this array
// is [1.0, 2.0] and the second row is [3.0, 4.0]
// Make an array of shape {2, 2} filled with ones:
auto y = mx::ones({2, 2});
// Pointwise add x and y:
auto z = mx::add(x, y);
// Same thing:
z = x + y;
// mlx is lazy by default. At this point `z` only
// has a shape and a type but no actual data:
assert(z.dtype() == mx::float32);
assert(z.shape(0) == 2);
assert(z.shape(1) == 2);
// To actually run the computation you must evaluate `z`.
// Under the hood, mlx records operations in a graph.
// The variable `z` is a node in the graph which points to its operation
// and inputs. When `eval` is called on an array (or arrays), the array and
// all of its dependencies are recursively evaluated to produce the result.
// Once an array is evaluated, it has data and is detached from its inputs.
mx::eval(z);
// Of course the array can still be an input to other operations. You can
// even call eval on the array again, this will just be a no-op:
mx::eval(z); // no-op
// Some functions or methods on arrays implicitly evaluate them. For example
// accessing a value in an array or printing the array implicitly evaluate it:
z = mx::ones({1});
z.item<float>(); // implicit evaluation
z = mx::ones({2, 2});
std::cout << z << std::endl; // implicit evaluation
}
void automatic_differentiation() {
auto fn = [](mx::array x) { return mx::square(x); };
// Computing the derivative function of a function
auto grad_fn = mx::grad(fn);
// Call grad_fn on the input to get the derivative
auto x = mx::array(1.5);
auto dfdx = grad_fn(x);
// dfdx is 2 * x
// Get the second derivative by composing grad with grad
auto d2fdx2 = mx::grad(mx::grad(fn))(x);
// d2fdx2 is 2
}
int main() {
array_basics();
automatic_differentiation();
}