mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 01:17:26 +08:00
101 lines
3.3 KiB
Python
101 lines
3.3 KiB
Python
# Copyright © 2023-2024 Apple Inc.
|
|
|
|
import unittest
|
|
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
import mlx_tests
|
|
import numpy as np
|
|
|
|
try:
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
has_torch = True
|
|
except ImportError as e:
|
|
has_torch = False
|
|
|
|
|
|
class TestUpsample(mlx_tests.MLXTestCase):
|
|
@unittest.skipIf(not has_torch, "requires Torch")
|
|
def test_torch_upsample(self):
|
|
def run_upsample(
|
|
N,
|
|
C,
|
|
idim,
|
|
scale_factor,
|
|
mode,
|
|
align_corner,
|
|
dtype="float32",
|
|
atol=1e-5,
|
|
):
|
|
with self.subTest(
|
|
N=N,
|
|
C=C,
|
|
idim=idim,
|
|
scale_factor=scale_factor,
|
|
mode=mode,
|
|
align_corner=align_corner,
|
|
):
|
|
np_dtype = getattr(np, dtype)
|
|
np.random.seed(0)
|
|
iH, iW = idim
|
|
in_np = np.random.normal(-1.0, 1.0, (N, iH, iW, C)).astype(np_dtype)
|
|
|
|
in_mx = mx.array(in_np)
|
|
in_pt = torch.from_numpy(in_np.transpose(0, 3, 1, 2)).to("cpu")
|
|
|
|
out_mx = nn.Upsample(
|
|
scale_factor=scale_factor,
|
|
mode=mode,
|
|
align_corners=align_corner,
|
|
)(in_mx)
|
|
mode_pt = {
|
|
"nearest": "nearest",
|
|
"linear": "bilinear",
|
|
"cubic": "bicubic",
|
|
}[mode]
|
|
out_pt = F.interpolate(
|
|
in_pt,
|
|
scale_factor=scale_factor,
|
|
mode=mode_pt,
|
|
align_corners=align_corner if mode != "nearest" else None,
|
|
)
|
|
out_pt = torch.permute(out_pt, (0, 2, 3, 1)).numpy(force=True)
|
|
self.assertEqual(out_pt.shape, out_mx.shape)
|
|
self.assertTrue(np.allclose(out_pt, out_mx, atol=atol))
|
|
|
|
for dtype in ("float32",):
|
|
for N, C in ((1, 1), (2, 3)):
|
|
# only test cases in which target sizes are intergers
|
|
# if not, there will be numerical difference between mlx
|
|
# and torch due to different indices selection.
|
|
for idim, scale_factor in (
|
|
((2, 2), (1.0, 1.0)),
|
|
((2, 2), (1.5, 1.5)),
|
|
((2, 2), (2.0, 2.0)),
|
|
((4, 4), (0.5, 0.5)),
|
|
((7, 7), (2.0, 2.0)),
|
|
((10, 10), (0.2, 0.2)),
|
|
((10, 10), (0.3, 0.3)),
|
|
((11, 21), (3.0, 3.0)),
|
|
((11, 21), (3.0, 2.0)),
|
|
):
|
|
for mode in ("cubic", "linear", "nearest"):
|
|
for align_corner in (False, True):
|
|
if mode == "nearest" and align_corner:
|
|
continue
|
|
run_upsample(
|
|
N,
|
|
C,
|
|
idim,
|
|
scale_factor,
|
|
mode,
|
|
align_corner,
|
|
dtype=dtype,
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
mlx_tests.MLXTestRunner()
|