mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
110 lines
3.5 KiB
Plaintext
110 lines
3.5 KiB
Plaintext
// Copyright © 2025 Apple Inc.
|
|
|
|
#include "mlx/backend/cuda/copy/copy.cuh"
|
|
|
|
#include <cooperative_groups.h>
|
|
|
|
namespace mlx::core {
|
|
|
|
namespace cu {
|
|
|
|
namespace cg = cooperative_groups;
|
|
|
|
template <typename In, typename Out, typename IdxT, int NDIM>
|
|
__global__ void copy_gg_nd(
|
|
const In* in,
|
|
Out* out,
|
|
IdxT size,
|
|
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
|
|
const __grid_constant__ cuda::std::array<int64_t, NDIM> strides_in,
|
|
const __grid_constant__ cuda::std::array<int64_t, NDIM> strides_out) {
|
|
IdxT index = cg::this_grid().thread_rank();
|
|
if (index < size) {
|
|
auto [idx_in, idx_out] = elem_to_loc_nd<NDIM>(
|
|
index, shape.data(), strides_in.data(), strides_out.data());
|
|
out[idx_out] = CastOp<In, Out>{}(in[idx_in]);
|
|
}
|
|
}
|
|
|
|
template <typename In, typename Out, typename IdxT>
|
|
__global__ void copy_gg(
|
|
const In* in,
|
|
Out* out,
|
|
IdxT size,
|
|
const __grid_constant__ Shape shape,
|
|
const __grid_constant__ Strides strides_in,
|
|
const __grid_constant__ Strides strides_out,
|
|
int ndim) {
|
|
IdxT index = cg::this_grid().thread_rank();
|
|
if (index < size) {
|
|
auto [idx_in, idx_out] = elem_to_loc(
|
|
index, shape.data(), strides_in.data(), strides_out.data(), ndim);
|
|
out[idx_out] = CastOp<In, Out>{}(in[idx_in]);
|
|
}
|
|
}
|
|
|
|
} // namespace cu
|
|
|
|
void copy_general(
|
|
cu::CommandEncoder& encoder,
|
|
CopyType ctype,
|
|
const array& in,
|
|
array& out,
|
|
int64_t offset_in,
|
|
int64_t offset_out,
|
|
const Shape& shape,
|
|
const Strides& strides_in,
|
|
const Strides& strides_out) {
|
|
dispatch_all_types(in.dtype(), [&](auto in_type_tag) {
|
|
dispatch_all_types(out.dtype(), [&](auto out_type_tag) {
|
|
dispatch_bool(
|
|
in.data_size() > INT32_MAX || out.data_size() > INT32_MAX,
|
|
[&](auto large) {
|
|
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
|
|
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
|
|
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
|
const InType* in_ptr = in.data<InType>() + offset_in;
|
|
OutType* out_ptr = out.data<OutType>() + offset_out;
|
|
int ndim = shape.size();
|
|
size_t data_size = 1;
|
|
for (auto& s : shape)
|
|
data_size *= s;
|
|
if (ndim <= 3) {
|
|
dispatch_1_2_3(ndim, [&](auto ndim_constant) {
|
|
auto [num_blocks, block_dims] =
|
|
get_launch_args(data_size, shape, out.strides(), large());
|
|
encoder.add_kernel_node(
|
|
cu::copy_gg_nd<InType, OutType, IdxT, ndim_constant()>,
|
|
num_blocks,
|
|
block_dims,
|
|
0,
|
|
in_ptr,
|
|
out_ptr,
|
|
data_size,
|
|
const_param<ndim_constant()>(shape),
|
|
const_param<ndim_constant()>(strides_in),
|
|
const_param<ndim_constant()>(strides_out));
|
|
});
|
|
} else { // ndim >= 4
|
|
auto [num_blocks, block_dims] =
|
|
get_launch_args(data_size, shape, out.strides(), large());
|
|
encoder.add_kernel_node(
|
|
cu::copy_gg<InType, OutType, IdxT>,
|
|
num_blocks,
|
|
block_dims,
|
|
0,
|
|
in_ptr,
|
|
out_ptr,
|
|
data_size,
|
|
const_param(shape),
|
|
const_param(strides_in),
|
|
const_param(strides_out),
|
|
ndim);
|
|
}
|
|
});
|
|
});
|
|
});
|
|
}
|
|
|
|
} // namespace mlx::core
|