mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-26 02:33:21 +08:00

* std and expm1 * actually add expm1 * fix linux * fix vjp * relax tol for linux test * Add it to the compilable primitives --------- Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
90 lines
3.2 KiB
C
90 lines
3.2 KiB
C
// Copyright © 2023 Apple Inc.
|
|
|
|
#pragma once
|
|
|
|
#include <metal_math>
|
|
|
|
// Original license copied below:
|
|
// Copyright (c) 2015-2023 Norbert Juffa
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions
|
|
// are met:
|
|
//
|
|
// 1. Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
//
|
|
// 2. Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
/* Compute exponential base e minus 1. Maximum ulp error = 0.997458
|
|
|
|
i = rint(a/log(2)), f = a-i*log(2). Then expm1(a) = 2**i * (expm1(f)+1) - 1.
|
|
Compute r = expm1(f). Then expm1(a)= 2 * (0.5 * 2**i * r + 0.5 * 2**i - 0.5).
|
|
With t = 0.5*2**i, expm1(a) = 2*(r * t + t-0.5). However, for best accuracy,
|
|
when i == 1, expm1(a)= 2*(r + 0.5), and when i == 0, expm1(a) = r.
|
|
|
|
NOTE: Scale factor b is only applied if i < 0 or i > 1 (should be power of 2)
|
|
*/
|
|
float expm1f_scaled_unchecked(float a, float b) {
|
|
float f, j, r, s, t, u, v, x, y;
|
|
int i;
|
|
|
|
// exp(a) = 2**i * exp(f); i = rintf (a / log(2))
|
|
j = fma(1.442695f, a, 12582912.f); // 0x1.715476p0, 0x1.8p23
|
|
j = j - 12582912.0f; // 0x1.8p23
|
|
i = (int)j;
|
|
f = fma(j, -6.93145752e-1f, a);
|
|
|
|
// approximate r = exp(f)-1 on interval [-log(2)/2, +log(2)/2]
|
|
s = f * f;
|
|
if (a == 0.0f)
|
|
s = a; // ensure -0 is passed through
|
|
// err = 0.997458 ulp1 = 11081805
|
|
r = 1.97350979e-4f; // 0x1.9de000p-13
|
|
r = fma(r, f, 1.39309070e-3f); // 0x1.6d30bcp-10
|
|
r = fma(r, f, 8.33343994e-3f); // 0x1.1111f6p-7
|
|
r = fma(r, f, 4.16668020e-2f); // 0x1.55559ep-5
|
|
r = fma(r, f, 1.66666716e-1f); // 0x1.55555cp-3
|
|
r = fma(r, f, 4.99999970e-1f); // 0x1.fffffep-2
|
|
u = (j == 1) ? (f + 0.5f) : f;
|
|
v = fma(r, s, u);
|
|
s = 0.5f * b;
|
|
t = ldexp(s, i);
|
|
y = t - s;
|
|
x = (t - y) - s; // double-float canonicalization of difference
|
|
r = fma(v, t, x) + y;
|
|
r = r + r;
|
|
if (j == 0)
|
|
r = v;
|
|
if (j == 1)
|
|
r = v + v;
|
|
return r;
|
|
}
|
|
|
|
/* Compute exponential base e minus 1. max ulp err = 0.99746 */
|
|
float expm1f(float a) {
|
|
float r;
|
|
|
|
r = expm1f_scaled_unchecked(a, 1.0f);
|
|
/* handle severe overflow and underflow */
|
|
if (abs(a - 1.0f) > 88.0f) {
|
|
r = fma(r, r, -1.0f);
|
|
}
|
|
return r;
|
|
}
|