mlx/benchmarks/python/sdpa_vector_bench.py
Alex Barron 5824626c0b start
2024-10-25 12:10:24 -07:00

79 lines
1.9 KiB
Python

import mlx.core as mx
import numpy as np
from time_utils import time_fn
L = 30000
H = 32
H_k = 32 // 4
D = 128
def attention(q, k, v):
k = mx.quantize(k)
v = mx.quantize(v)
k = mx.dequantize(*k)
v = mx.dequantize(*v)
B, Hq, L, D = q.shape
_, Hk, S, _ = k.shape
q = q.reshape(B, Hk, Hq // Hk, L, D)
k = k[:, :, None, :, :]
v = v[:, :, None, :, :]
s = q @ k.transpose(0, 1, 2, 4, 3)
p = mx.softmax(s.astype(mx.float32), axis=-1).astype(s.dtype)
o = p @ v
return o.reshape(B, Hq, L, D)
def sdpa(q, k, v):
k = mx.quantize(k)
v = mx.quantize(v)
k = mx.dequantize(*k)
v = mx.dequantize(*v)
return mx.fast.scaled_dot_product_attention(q, k, v, scale=1.0)
def quant_sdpa(q, k, v):
k = mx.quantize(k)
v = mx.quantize(v)
return mx.fast.quantized_scaled_dot_product_attention(q, *k, *v, scale=1.0)
def time_self_attention_primitives(q, k, v):
time_fn(attention, q, k, v)
def time_self_attention_sdpa(q, k, v):
time_fn(sdpa, q, k, v)
def time_self_attention_quant_sdpa(q, k, v):
time_fn(quant_sdpa, q, k, v)
if __name__ == "__main__":
mx.random.seed(3)
q = mx.random.uniform(shape=(1, H, 10, D))
k = mx.random.uniform(shape=(1, H_k, L, D))
v = mx.random.uniform(shape=(1, H_k, L, D))
mx.eval(q, k, v)
k_quant = mx.quantize(k)
v_quant = mx.quantize(v)
mx.eval(k_quant, v_quant)
# time_self_attention_sdpa(q, k, v)
# time_self_attention_quant_sdpa(q, k_quant, v_quant)
# time_self_attention_primitives(q, k, v)
q_sdpa = quant_sdpa(q, k, v)
print(q_sdpa)
o_attention = attention(q, k, v)
print(o_attention)
np.testing.assert_allclose(q_sdpa, o_attention, atol=1e-5)
# o_sdpa = sdpa(q, k, v)
# print(o_sdpa)
# np.testing.assert_allclose(q_sdpa, o_sdpa, atol=1e-5)
# print(o_sdpa[..., :64])
# print()
# print(o_attention[..., :64])
# np.testing.assert_allclose(o_sdpa, o_attention)