mirror of
				https://github.com/ml-explore/mlx.git
				synced 2025-11-01 00:28:11 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			63 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			63 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright © 2023 Apple Inc.
 | |
| 
 | |
| import argparse
 | |
| 
 | |
| import mlx.core as mx
 | |
| from time_utils import time_fn
 | |
| 
 | |
| B = 8
 | |
| T = 1024
 | |
| D = 512
 | |
| 
 | |
| 
 | |
| def time_batch_matmul():
 | |
|     mx.random.seed(3)
 | |
|     a = mx.random.uniform(shape=(B, T, D))
 | |
|     b = mx.random.uniform(shape=(D, D))
 | |
|     c = mx.random.uniform(shape=(B, T, D))
 | |
|     mx.eval(a, b, c)
 | |
| 
 | |
|     time_fn(mx.matmul, a, b)
 | |
| 
 | |
|     def batch_vjp_first():
 | |
|         return mx.vjp(mx.matmul, [a, b], [c])[1][0]
 | |
| 
 | |
|     time_fn(batch_vjp_first)
 | |
| 
 | |
|     def batch_vjp_second():
 | |
|         return mx.vjp(mx.matmul, [a, b], [c])[1][1]
 | |
| 
 | |
|     time_fn(batch_vjp_second)
 | |
| 
 | |
| 
 | |
| def time_unbatch_matmul():
 | |
|     mx.random.seed(3)
 | |
|     a = mx.random.uniform(shape=(B * T, D))
 | |
|     b = mx.random.uniform(shape=(D, D))
 | |
|     c = mx.random.uniform(shape=(B * T, D))
 | |
|     mx.eval(a, b, c)
 | |
|     time_fn(mx.matmul, a, b)
 | |
| 
 | |
|     def unbatch_vjp_first():
 | |
|         return mx.matmul(c, mx.transpose(b))
 | |
| 
 | |
|     time_fn(unbatch_vjp_first)
 | |
| 
 | |
|     def unbatch_vjp_second():
 | |
|         return mx.matmul(mx.transpose(a), c)
 | |
| 
 | |
|     time_fn(unbatch_vjp_second)
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     parser = argparse.ArgumentParser("MLX benchmarks.")
 | |
|     parser.add_argument("--gpu", action="store_true", help="Use the Metal back-end.")
 | |
|     args = parser.parse_args()
 | |
|     if args.gpu:
 | |
|         mx.set_default_device(mx.gpu)
 | |
|     else:
 | |
|         mx.set_default_device(mx.cpu)
 | |
| 
 | |
|     time_batch_matmul()
 | |
|     time_unbatch_matmul()
 | 
