mirror of
				https://github.com/ml-explore/mlx.git
				synced 2025-11-01 00:28:11 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			108 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			108 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright © 2023-2024 Apple Inc.
 | |
| 
 | |
| import argparse
 | |
| import math
 | |
| import random
 | |
| 
 | |
| import mlx.core as mx
 | |
| from time_utils import time_fn
 | |
| 
 | |
| 
 | |
| def bench_gelu():
 | |
|     def gelu(x):
 | |
|         return x * (1 + mx.erf(x / math.sqrt(2))) / 2
 | |
| 
 | |
|     x = mx.random.uniform(shape=(1000, 1024))
 | |
| 
 | |
|     def gen_fun(fun):
 | |
|         def bench_fun(x):
 | |
|             for _ in range(10):
 | |
|                 x = fun(x)
 | |
|             return x
 | |
| 
 | |
|         return bench_fun
 | |
| 
 | |
|     time_fn(gen_fun(gelu), x, msg="fixed gelu")
 | |
|     time_fn(gen_fun(mx.compile(gelu)), x, msg="compiled fixed gelu")
 | |
| 
 | |
|     def randint():
 | |
|         return random.randint(1, x.shape[0])
 | |
| 
 | |
|     def gen_fun(fun):
 | |
|         def bench_fun(x, y):
 | |
|             x = x[: randint()]
 | |
|             for _ in range(10):
 | |
|                 x = fun(x)
 | |
|                 y = fun(y)
 | |
|             return x, y
 | |
| 
 | |
|         return bench_fun
 | |
| 
 | |
|     y = mx.random.uniform(shape=(1000, 1024))
 | |
|     time_fn(gen_fun(gelu), x, y, msg="variable gelu")
 | |
|     time_fn(gen_fun(mx.compile(gelu)), x, y, msg="compiled variable gelu")
 | |
|     time_fn(
 | |
|         gen_fun(mx.compile(gelu, shapeless=True)),
 | |
|         x,
 | |
|         y,
 | |
|         msg="shapeless variable gelu",
 | |
|     )
 | |
| 
 | |
| 
 | |
| def bench_layernorm():
 | |
|     weight = mx.random.uniform(shape=(4096,)).astype(mx.float16)
 | |
|     bias = mx.random.uniform(shape=(4096,)).astype(mx.float16)
 | |
|     mx.eval(weight, bias)
 | |
| 
 | |
|     def layernorm(x):
 | |
|         x = x.astype(mx.float32)
 | |
|         means = mx.mean(x, axis=-1, keepdims=True)
 | |
|         var = mx.var(x, axis=-1, keepdims=True)
 | |
|         x = (x - means) * mx.rsqrt(var + 1e-4)
 | |
|         x = x.astype(mx.float16)
 | |
|         return weight * x + bias
 | |
| 
 | |
|     x = mx.random.uniform(shape=(1000, 4096)).astype(mx.float16)
 | |
| 
 | |
|     def gen_fun(fun):
 | |
|         def bench_fun(x):
 | |
|             for _ in range(10):
 | |
|                 x = fun(x)
 | |
|             return x
 | |
| 
 | |
|         return bench_fun
 | |
| 
 | |
|     time_fn(gen_fun(layernorm), x, msg="fixed layernorm")
 | |
|     time_fn(gen_fun(mx.compile(layernorm)), x, msg="compiled fixed layernorm")
 | |
| 
 | |
|     def randint():
 | |
|         return random.randint(1, x.shape[0])
 | |
| 
 | |
|     def gen_fun(fun):
 | |
|         def bench_fun(x):
 | |
|             x = x[: randint()]
 | |
|             for _ in range(10):
 | |
|                 x = fun(x)
 | |
|             return x
 | |
| 
 | |
|         return bench_fun
 | |
| 
 | |
|     random.seed(0)
 | |
|     time_fn(gen_fun(layernorm), x, msg="variable layernorm")
 | |
|     random.seed(0)
 | |
|     time_fn(gen_fun(mx.compile(layernorm)), x, msg="compiled variable layernorm")
 | |
|     random.seed(0)
 | |
|     time_fn(
 | |
|         gen_fun(mx.compile(layernorm, shapeless=True)),
 | |
|         x,
 | |
|         msg="shapeless variable layernorm",
 | |
|     )
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     parser = argparse.ArgumentParser("Compile benchmarks.")
 | |
|     args = parser.parse_args()
 | |
| 
 | |
|     bench_gelu()
 | |
|     bench_layernorm()
 | 
