mirror of
				https://github.com/ml-explore/mlx.git
				synced 2025-11-01 00:28:11 +08:00 
			
		
		
		
	 baf9fa5f42
			
		
	
	baf9fa5f42
	
	
	
		
			
			* einsum initial * fix comma break * sum axis was wrong * small cleanups * python binding * changed bindings to resemble numpy * remove todo comment * comment changes * add count of operands/inputs * fail fast if operands list is empty * ignore comma if no output * einsum path matching numpy * getting somewhere with path * remove print * it passes the first test * moved einsum tests to seperate file * seperated einsum path * moved einsum naive * remove space from equation * fast fail if no operands passed * update tests and remove printf * small cleanup * some more cleanups * removed python helper file * ack * utilize std for finding min in vector * duplicate def * remove the tuple as it was unreadable * moved einsum_naive back to ops * remaining isn't needed * avoid creating another set * cleanup * greedy path, start of naive einsum * more einsum * fix some bugs * some more fixes, tests pass * benchmark * some simplify * fix einsum and test Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com> * add a bunch more tests and fix a bunch more bugs * some docs nits --------- Co-authored-by: dc-dc-dc <dgcruz983@gmail.com> Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
		
			
				
	
	
		
			85 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			85 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright © 2024 Apple Inc.
 | |
| 
 | |
| import time
 | |
| 
 | |
| import mlx.core as mx
 | |
| import numpy as np
 | |
| 
 | |
| 
 | |
| def timeit(fn, its=100, args=[]):
 | |
|     for _ in range(5):
 | |
|         fn(*args)
 | |
|     tic = time.perf_counter()
 | |
|     for _ in range(its):
 | |
|         fn(*args)
 | |
|     toc = time.perf_counter()
 | |
|     return 1e3 * (toc - tic) / its
 | |
| 
 | |
| 
 | |
| def time_little_einsum_path():
 | |
|     subscripts = "ik,kj->ij"
 | |
|     x = mx.ones((32, 32))
 | |
|     y = mx.ones((32, 32))
 | |
|     mx_time = timeit(mx.einsum_path, args=(subscripts, x, y))
 | |
| 
 | |
|     x = np.array(x)
 | |
|     y = np.array(y)
 | |
|     np_time = timeit(np.einsum_path, args=(subscripts, x, y))
 | |
|     print("Timing little einsum path...")
 | |
|     print(f"MLX ... {mx_time:.3f} ms")
 | |
|     print(f"NumPy... {np_time:.3f} ms")
 | |
| 
 | |
| 
 | |
| def time_big_einsum_path():
 | |
|     chars = list("abcdefgh")
 | |
|     char_to_dim = {c: v for v, c in enumerate(chars)}
 | |
| 
 | |
|     num_inputs = 10
 | |
|     inputs = []
 | |
|     subscripts = []
 | |
|     for _ in range(num_inputs):
 | |
|         subscript = np.random.choice(chars, size=5, replace=False).tolist()
 | |
|         subscripts.append("".join(subscript))
 | |
|         inputs.append(np.ones(list(char_to_dim[c] for c in subscript)))
 | |
|     subscripts = ",".join(subscripts)
 | |
| 
 | |
|     np_time = timeit(np.einsum_path, args=(subscripts, *inputs))
 | |
| 
 | |
|     inputs = [mx.array(x) for x in inputs]
 | |
|     mx_time = timeit(mx.einsum_path, args=(subscripts, *inputs))
 | |
|     print("Timing big einsum path...")
 | |
|     print(f"MLX ... {mx_time:.3f} ms")
 | |
|     print(f"NumPy... {np_time:.3f} ms")
 | |
| 
 | |
| 
 | |
| def time_attention():
 | |
|     def regular_attention(x):
 | |
|         # shape [batch, sequence, num_heads, head_dim]
 | |
|         queries, keys, values = x, x, x
 | |
|         scores = queries.transpose(0, 2, 1, 3) @ keys.transpose(0, 2, 3, 1)
 | |
|         scores = mx.softmax(scores, axis=-1)
 | |
|         output = (scores @ values.transpose(0, 2, 1, 3)).swapaxes(1, 2)
 | |
|         mx.eval(output)
 | |
| 
 | |
|     def einsum_attention(x):
 | |
|         # shape [batch, sequence, num_heads, head_dim]
 | |
|         queries, keys, values = x, x, x
 | |
|         scores = mx.einsum("itjk,iujk->ijtu", queries, keys)
 | |
|         scores = mx.softmax(scores, axis=-1)
 | |
|         output = mx.einsum("ijtu,iujk->itjk", scores, values)
 | |
|         mx.eval(output)
 | |
| 
 | |
|     x = mx.random.uniform(shape=(8, 512, 32, 128))
 | |
| 
 | |
|     regular_time = timeit(regular_attention, args=(x,))
 | |
|     ein_time = timeit(einsum_attention, args=(x,))
 | |
|     print("Timing einsum attention...")
 | |
|     print(f"Regular ... {regular_time:.3f} ms")
 | |
|     print(f"Einsum ... {ein_time:.3f} ms")
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     time_little_einsum_path()
 | |
|     time_big_einsum_path()
 | |
|     time_attention()
 |