mirror of
				https://github.com/ml-explore/mlx.git
				synced 2025-11-01 00:28:11 +08:00 
			
		
		
		
	 9adcd1a650
			
		
	
	9adcd1a650
	
	
	
		
			
			* Update API to allow mask='causal' in fast::sdpa * Add fallback * Update steel::AttnParams * Fix typo * WIP, basic causal * Update tests * Update benchmarking * Update masking loop limits * Add bool masking and update tests * Update additive mask * Update benchmarks * Update benchmarks * Update tests * Update for bfloat error * Update early exit * Add random seed to tests
		
			
				
	
	
		
			224 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			224 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright © 2024 Apple Inc.
 | |
| 
 | |
| import argparse
 | |
| import math
 | |
| import os
 | |
| import subprocess
 | |
| import time
 | |
| 
 | |
| import mlx.core as mx
 | |
| import numpy as np
 | |
| 
 | |
| device_name = subprocess.check_output(["sysctl", "-n", "machdep.cpu.brand_string"])
 | |
| device_name = device_name.decode("utf-8").strip("\n")
 | |
| 
 | |
| N_warmup = 5
 | |
| N_iter_bench = 40
 | |
| N_iter_func = 8
 | |
| 
 | |
| 
 | |
| def bench(f, *args):
 | |
|     for i in range(N_warmup):
 | |
|         f(*args)
 | |
| 
 | |
|     s = time.perf_counter_ns()
 | |
|     for i in range(N_iter_bench):
 | |
|         f(*args)
 | |
|     e = time.perf_counter_ns()
 | |
|     return (e - s) * 1e-9
 | |
| 
 | |
| 
 | |
| def prepare_inputs(B, qL, kL, D, qH, kH, mask, transpose, dtype):
 | |
|     np_dtype = getattr(np, dtype)
 | |
| 
 | |
|     shape_q = (B, qL, qH, D) if transpose else (B, qH, qL, D)
 | |
|     shape_kv = (B, kL, kH, D) if transpose else (B, kH, kL, D)
 | |
| 
 | |
|     scale = 1.0 / math.sqrt(D)
 | |
| 
 | |
|     q_np = np.random.normal(0.0, 1.0, shape_q).astype(np_dtype)
 | |
|     k_np = np.random.normal(0.0, scale, shape_kv).astype(np_dtype)
 | |
|     v_np = np.random.normal(0.0, scale, shape_kv).astype(np_dtype)
 | |
| 
 | |
|     q_mx = mx.array(q_np)
 | |
|     k_mx = mx.array(k_np)
 | |
|     v_mx = mx.array(v_np)
 | |
| 
 | |
|     if mask is not None:
 | |
|         if mask == "additive":
 | |
|             mask_np = np.random.normal(0.0, 1.0, (B, qH, qL, kL)).astype(np_dtype)
 | |
|             mask = mx.array(mask_np)
 | |
|         elif mask == "bool":
 | |
|             mask_np = np.random.uniform(0.0, 1.0, (B, qH, qL, kL)) < 0.5
 | |
|             mask = mx.array(mask_np)
 | |
| 
 | |
|     return q_mx, k_mx, v_mx, scale, mask
 | |
| 
 | |
| 
 | |
| def mlx_ref_attn(q, k, v, scale=1.0, mask=None):
 | |
|     q_dtype = q.dtype
 | |
|     q = q * mx.array(scale, q_dtype)
 | |
|     n_q_heads = q.shape[-3]
 | |
|     n_kv_heads = k.shape[-3]
 | |
|     n_repeats = n_q_heads // n_kv_heads
 | |
| 
 | |
|     B = q.shape[0]
 | |
|     L = q.shape[2]
 | |
|     kL = k.shape[2]
 | |
| 
 | |
|     if n_repeats > 1:
 | |
|         q = mx.reshape(q, [B, n_kv_heads, n_repeats, L, -1])
 | |
|         k = mx.expand_dims(k, 2)
 | |
|         v = mx.expand_dims(v, 2)
 | |
| 
 | |
|     scores = q @ mx.swapaxes(k, -1, -2)
 | |
| 
 | |
|     if mask is not None:
 | |
| 
 | |
|         if mask == "causal":
 | |
|             q_offset = max(0, kL - L)
 | |
|             q_indices = mx.arange(q_offset, q_offset + L)
 | |
|             k_indices = mx.arange(kL)
 | |
|             mask = q_indices[:, None] >= k_indices[None]
 | |
| 
 | |
|         if n_repeats > 1 and mask.ndim >= 3:
 | |
|             if mask.shape[-3] == 1:
 | |
|                 mask = mx.expand_dims(mask, -3)
 | |
|             else:
 | |
|                 mask = mx.unflatten(mask, -3, (n_kv_heads, n_repeats))
 | |
| 
 | |
|         if mask.dtype == mx.bool_:
 | |
|             scores = mx.where(mask, scores, -np.float32(np.inf))
 | |
|         else:
 | |
|             scores += mask
 | |
| 
 | |
|     scores = mx.softmax(scores, axis=-1, precise=True)
 | |
| 
 | |
|     out = scores @ v
 | |
|     if n_repeats > 1:
 | |
|         out = mx.reshape(out, [B, n_q_heads, L, -1])
 | |
| 
 | |
|     return out
 | |
| 
 | |
| 
 | |
| def mlx_fused_attn(q, k, v, scale, mask):
 | |
|     return mx.fast.scaled_dot_product_attention(q, k, v, scale=scale, mask=mask)
 | |
| 
 | |
| 
 | |
| def do_attention(f, q, k, v, scale, mask=None, transpose=False):
 | |
|     if transpose:
 | |
|         q_t = mx.transpose(q, (0, 2, 1, 3))
 | |
|         k_t = mx.transpose(k, (0, 2, 1, 3))
 | |
|         v_t = mx.transpose(v, (0, 2, 1, 3))
 | |
|         o_t = f(q_t, k_t, v_t, scale=scale, mask=mask)
 | |
|         return mx.transpose(o_t, (0, 2, 1, 3))
 | |
|     else:
 | |
|         return f(q, k, v, scale=scale, mask=mask)
 | |
| 
 | |
| 
 | |
| def do_attention_bench(f, q, k, v, scale, mask=None, transpose=False):
 | |
|     q_out = q
 | |
| 
 | |
|     for i in range(N_iter_func):
 | |
|         q_out = do_attention(f, q_out, k, v, scale, mask=mask, transpose=transpose)
 | |
| 
 | |
|     mx.eval(q_out)
 | |
|     return q_out
 | |
| 
 | |
| 
 | |
| def bench_shape(
 | |
|     B, qsl, ksl, head_dim, n_q_heads, n_kv_heads, dtype, transpose=True, mask_in=None
 | |
| ):
 | |
|     q_mx, k_mx, v_mx, scale, mask = prepare_inputs(
 | |
|         B, qsl, ksl, head_dim, n_q_heads, n_kv_heads, mask_in, transpose, dtype
 | |
|     )
 | |
| 
 | |
|     time_mlx_unfused = bench(
 | |
|         do_attention_bench, mlx_ref_attn, q_mx, k_mx, v_mx, scale, mask, transpose
 | |
|     )
 | |
|     time_mlx_fused = bench(
 | |
|         do_attention_bench, mlx_fused_attn, q_mx, k_mx, v_mx, scale, mask, transpose
 | |
|     )
 | |
| 
 | |
|     o_mlx_fused = do_attention(mlx_ref_attn, q_mx, k_mx, v_mx, scale, mask, transpose)
 | |
|     o_mlx_unfused = do_attention(
 | |
|         mlx_fused_attn, q_mx, k_mx, v_mx, scale, mask, transpose
 | |
|     )
 | |
| 
 | |
|     atol = 1e-5 if dtype == "float32" else 2e-4
 | |
| 
 | |
|     if not mx.allclose(o_mlx_fused, o_mlx_unfused, atol=atol, rtol=atol):
 | |
|         print(
 | |
|             f"Failed at (B: {B}, qsl: {qsl}, ksl: {ksl}, head_dim: {head_dim}, n_qh: {n_q_heads}, n_kvh: {n_kv_heads}, mask: {mask_in}) [tpose = {transpose}] with max(|a - b|) = {mx.max(mx.abs(o_mlx_unfused - o_mlx_fused)):3.2e}"
 | |
|         )
 | |
| 
 | |
|     return time_mlx_fused, time_mlx_unfused
 | |
| 
 | |
| 
 | |
| def get_gflop_count(B, M, N, K):
 | |
|     return float(2.0 * N_iter_bench * N_iter_func * B * M * N * K) / float(1024.0**3)
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     parser = argparse.ArgumentParser(description="Run gemm benchmarks")
 | |
| 
 | |
|     dtypes = ("float16", "float32")[:1]
 | |
|     transposes = (False,)
 | |
| 
 | |
|     # fmt: off
 | |
|     shapes_64 = (
 | |
|         # (  B,   qsl,   ksl, head_dim, n_qh, n_kvh)
 | |
|           (  1,    32,    32,       64,   32,    32),
 | |
|           (  1,    64,    64,       64,   32,    32),
 | |
|           (  1,   128,   128,       64,   32,    32),
 | |
|           (  1,   256,   256,       64,   32,    32),
 | |
|           (  1,   512,   512,       64,   32,    32),
 | |
|           (  1,  1024,  1024,       64,   32,     8),
 | |
|           (  1,  2048,  2048,       64,   32,     8),
 | |
|           (  1,  4096,  4096,       64,   32,     8),
 | |
|     )
 | |
| 
 | |
|     shapes_80 = (
 | |
|         # (  B,   qsl,   ksl, head_dim, n_qh, n_kvh)
 | |
|           (  1,  1024,  1024,       80,   32,     8),
 | |
|           (  1,  2048,  2048,       80,   32,     8),
 | |
|           (  1,  4096,  4096,       80,   32,     8),
 | |
|     )
 | |
| 
 | |
|     shapes_128 = (
 | |
|         # (  B,   qsl,   ksl, head_dim, n_qh, n_kvh)
 | |
|           (  1,  1024,  1024,      128,   32,     8),
 | |
|           (  1,  2048,  2048,      128,   32,     8),
 | |
|           (  1,  4096,  4096,      128,   32,     8),
 | |
|     )
 | |
|     # fmt: on
 | |
| 
 | |
|     shapes = shapes_64 + shapes_80 + shapes_128
 | |
| 
 | |
|     masks = [None, "bool", "causal"]
 | |
| 
 | |
|     print(
 | |
|         "  B,   qsl,   ksl, hdim, n_qh, n_kvh, t,   dtype,     mask, t_unfs, t_fuse, diff%"
 | |
|     )
 | |
| 
 | |
|     for dtype in dtypes:
 | |
|         for transpose in transposes:
 | |
|             for B, qsl, ksl, head_dim, n_q_heads, n_kv_heads in shapes:
 | |
|                 for mask_in in masks:
 | |
|                     time_mlx_fused, time_mlx_unfused = bench_shape(
 | |
|                         B,
 | |
|                         qsl,
 | |
|                         ksl,
 | |
|                         head_dim,
 | |
|                         n_q_heads,
 | |
|                         n_kv_heads,
 | |
|                         dtype,
 | |
|                         transpose,
 | |
|                         mask_in,
 | |
|                     )
 | |
|                     diff = time_mlx_unfused / time_mlx_fused - 1.0
 | |
|                     t_str = 1 if transpose else 0
 | |
|                     print(
 | |
|                         f"{B:3d}, {qsl:5d}, {ksl:5d}, {head_dim:4d}, {n_q_heads:4d}, {n_kv_heads:5d}, {t_str:1d}, {dtype}, {str(mask_in):>8}, {time_mlx_unfused: 2.3f}, {time_mlx_fused: 2.3f}, {100. * diff:+5.2f}%"
 | |
|                     )
 |