mlx/mlx/backend/cpu/matmul.cpp
Awni Hannun 8f3d208dce
Close a couple edge case bugs: hadamard and addmm on empty inputs (#2177)
* handle hadamard and addmm on empty inputs

* fix
2025-05-12 10:48:57 -07:00

153 lines
4.3 KiB
C++

// Copyright © 2023-2024 Apple Inc.
#include <cstring>
#include "mlx/array.h"
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/encoder.h"
#include "mlx/backend/cpu/gemm.h"
#include "mlx/primitives.h"
namespace mlx::core {
template <typename T>
void matmul_dispatch(
const array& a,
const array& b,
array& out,
bool a_transposed,
bool b_transposed,
size_t lda,
size_t ldb,
float alpha,
float beta,
Stream stream) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
T* out_ptr = out.data<T>();
size_t ldc = out.shape(-1);
size_t batch_size = a.size() / (a.shape(-2) * a.shape(-1));
auto& encoder = cpu::get_command_encoder(stream);
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(out);
encoder.dispatch([a_ptr,
b_ptr,
out_ptr,
a_transposed,
b_transposed,
lda,
ldb,
ldc,
alpha,
beta,
batch_size,
a_shape = a.shape(),
a_strides = a.strides(),
b_shape = b.shape(),
b_strides = b.strides()]() {
matmul<T>(
a_ptr,
b_ptr,
out_ptr,
a_transposed,
b_transposed,
lda,
ldb,
ldc,
alpha,
beta,
batch_size,
a_shape,
a_strides,
b_shape,
b_strides);
});
}
void matmul_general(
const array& a_pre,
const array& b_pre,
array& out,
Stream stream,
float alpha = 1.0f,
float beta = 0.0f) {
std::vector<array> temps;
auto check_transpose = [stream, &temps](const array& arr) {
auto stx = arr.strides()[arr.ndim() - 2];
auto sty = arr.strides()[arr.ndim() - 1];
if (stx == arr.shape(-1) && sty == 1) {
return std::make_tuple(false, stx, arr);
} else if (stx == 1 && sty == arr.shape(-2)) {
return std::make_tuple(true, sty, arr);
} else {
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
copy(arr, temps.back(), CopyType::General, stream);
stx = arr.shape(-1);
return std::make_tuple(false, stx, temps.back());
}
};
auto [a_transposed, lda, a] = check_transpose(a_pre);
auto [b_transposed, ldb, b] = check_transpose(b_pre);
size_t M = a.shape(-2);
size_t N = b.shape(-1);
size_t K = a.shape(-1);
if (M == 0 || N == 0) {
return;
}
if (out.dtype() == float32) {
matmul_dispatch<float>(
a, b, out, a_transposed, b_transposed, lda, ldb, alpha, beta, stream);
} else if (out.dtype() == float16) {
matmul_dispatch<float16_t>(
a, b, out, a_transposed, b_transposed, lda, ldb, alpha, beta, stream);
} else if (out.dtype() == bfloat16) {
matmul_dispatch<bfloat16_t>(
a, b, out, a_transposed, b_transposed, lda, ldb, alpha, beta, stream);
} else if (out.dtype() == float64) {
matmul_dispatch<double>(
a, b, out, a_transposed, b_transposed, lda, ldb, alpha, beta, stream);
} else {
throw std::runtime_error("[Matmul::eval_cpu] Invalid type.");
}
cpu::get_command_encoder(stream).add_temporaries(std::move(temps));
}
void Matmul::eval_cpu(const std::vector<array>& inputs, array& out) {
out.set_data(allocator::malloc(out.nbytes()));
if (inputs[0].shape(-1) == 0) {
auto& encoder = cpu::get_command_encoder(stream());
encoder.set_output_array(out);
encoder.dispatch([out_ptr = out.data<void>(), nbytes = out.nbytes()]() {
std::memset(out_ptr, 0, nbytes);
});
return;
}
matmul_general(inputs[0], inputs[1], out, stream());
}
void AddMM::eval_cpu(const std::vector<array>& inputs, array& out) {
if (out.dtype() != float32) {
throw std::runtime_error(
"[AddMM::eval_cpu] Currently only supports float32.");
}
if (out.size() == 0) {
out.set_data(allocator::malloc(out.nbytes()));
return;
}
// Fill output with C
auto& c = inputs[2];
CopyType ctype = c.data_size() == 1
? CopyType::Scalar
: (c.flags().row_contiguous ? CopyType::Vector : CopyType::General);
copy(c, out, ctype, stream());
if (inputs[0].shape(-1) == 0) {
return;
}
matmul_general(inputs[0], inputs[1], out, stream(), alpha_, beta_);
}
} // namespace mlx::core