mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 01:17:26 +08:00
92 lines
3.1 KiB
Python
92 lines
3.1 KiB
Python
# Copyright © 2023 Apple Inc.
|
|
|
|
import itertools
|
|
import unittest
|
|
|
|
import mlx.core as mx
|
|
import mlx_tests
|
|
import numpy as np
|
|
|
|
|
|
class TestFFT(mlx_tests.MLXTestCase):
|
|
def check_mx_np(self, op, a_np, axes, s):
|
|
with self.subTest(op=op, axes=axes, s=s):
|
|
op_np = getattr(np.fft, op)
|
|
op_mx = getattr(mx.fft, op)
|
|
out_np = op_np(a_np, s=s, axes=axes)
|
|
a_mx = mx.array(a_np)
|
|
out_mx = op_mx(a_mx, s=s, axes=axes)
|
|
self.assertTrue(np.allclose(out_np, out_mx, atol=1e-5, rtol=1e-6))
|
|
|
|
def test_fft(self):
|
|
default = mx.default_device()
|
|
mx.set_default_device(mx.cpu)
|
|
|
|
def check_mx_np(op_mx, op_np, a_np, **kwargs):
|
|
out_np = op_np(a_np, **kwargs)
|
|
a_mx = mx.array(a_np)
|
|
out_mx = op_mx(a_mx, **kwargs)
|
|
self.assertTrue(np.allclose(out_np, out_mx, atol=1e-5, rtol=1e-6))
|
|
|
|
r = np.random.rand(100).astype(np.float32)
|
|
i = np.random.rand(100).astype(np.float32)
|
|
a_np = r + 1j * i
|
|
check_mx_np(mx.fft.fft, np.fft.fft, a_np)
|
|
|
|
# Check with slicing and padding
|
|
r = np.random.rand(100).astype(np.float32)
|
|
i = np.random.rand(100).astype(np.float32)
|
|
a_np = r + 1j * i
|
|
check_mx_np(mx.fft.fft, np.fft.fft, a_np, n=80)
|
|
check_mx_np(mx.fft.fft, np.fft.fft, a_np, n=120)
|
|
|
|
# Check different axes
|
|
r = np.random.rand(100, 100).astype(np.float32)
|
|
i = np.random.rand(100, 100).astype(np.float32)
|
|
a_np = r + 1j * i
|
|
check_mx_np(mx.fft.fft, np.fft.fft, a_np, axis=0)
|
|
check_mx_np(mx.fft.fft, np.fft.fft, a_np, axis=1)
|
|
|
|
# Check real fft
|
|
a_np = np.random.rand(100).astype(np.float32)
|
|
check_mx_np(mx.fft.rfft, np.fft.rfft, a_np)
|
|
check_mx_np(mx.fft.rfft, np.fft.rfft, a_np, n=80)
|
|
check_mx_np(mx.fft.rfft, np.fft.rfft, a_np, n=120)
|
|
|
|
# Check real inverse
|
|
r = np.random.rand(100, 100).astype(np.float32)
|
|
i = np.random.rand(100, 100).astype(np.float32)
|
|
a_np = r + 1j * i
|
|
check_mx_np(mx.fft.ifft, np.fft.ifft, a_np)
|
|
check_mx_np(mx.fft.ifft, np.fft.ifft, a_np, n=80)
|
|
check_mx_np(mx.fft.ifft, np.fft.ifft, a_np, n=120)
|
|
check_mx_np(mx.fft.irfft, np.fft.irfft, a_np)
|
|
check_mx_np(mx.fft.irfft, np.fft.irfft, a_np, n=80)
|
|
check_mx_np(mx.fft.irfft, np.fft.irfft, a_np, n=120)
|
|
|
|
mx.set_default_device(default)
|
|
|
|
def test_fftn(self):
|
|
default = mx.default_device()
|
|
mx.set_default_device(mx.cpu)
|
|
|
|
r = np.random.randn(8, 8, 8).astype(np.float32)
|
|
i = np.random.randn(8, 8, 8).astype(np.float32)
|
|
a = r + 1j * i
|
|
|
|
axes = [None, (1, 2), (2, 1), (0, 2)]
|
|
shapes = [None, (10, 5), (5, 10)]
|
|
ops = ["fft2", "ifft2", "rfft2", "irfft2", "fftn", "ifftn", "rfftn", "irfftn"]
|
|
|
|
for op, ax, s in itertools.product(ops, axes, shapes):
|
|
x = a
|
|
if op in ["rfft2", "rfftn"]:
|
|
x = r
|
|
self.check_mx_np(op, x, axes=ax, s=s)
|
|
|
|
mx.set_default_device(default)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|