mlx/python/mlx/nn/layers/convolution.py
Max-Heinrich Laves ff4223904d
Conv3d (#993)
* added conv3d

added conv3d

implemented explicit_gemm_conv_ND_cpu and bounds checks for slow_conv_3D

* incorporated reviewer comments

* fixed test

* reduced tensor shapes in test for conv3d

* Reviewer suggestion

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

Reviewer suggestion

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

Reviewer suggestion

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

Reviewer suggestion
2024-05-11 06:15:02 -07:00

198 lines
6.5 KiB
Python

# Copyright © 2023 Apple Inc.
import math
from typing import Union
import mlx.core as mx
from mlx.nn.layers.base import Module
class Conv1d(Module):
"""Applies a 1-dimensional convolution over the multi-channel input sequence.
The channels are expected to be last i.e. the input shape should be ``NLC`` where:
- ``N`` is the batch dimension
- ``L`` is the sequence length
- ``C`` is the number of input channels
Args:
in_channels (int): The number of input channels
out_channels (int): The number of output channels
kernel_size (int): The size of the convolution filters
stride (int, optional): The stride when applying the filter.
Default: 1.
padding (int, optional): How many positions to 0-pad the input with.
Default: 0.
dilation (int, optional): The dilation of the convolution.
bias (bool, optional): If ``True`` add a learnable bias to the output.
Default: ``True``
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
padding: int = 0,
dilation: int = 1,
bias: bool = True,
):
super().__init__()
scale = math.sqrt(1 / (in_channels * kernel_size))
self.weight = mx.random.uniform(
low=-scale,
high=scale,
shape=(out_channels, kernel_size, in_channels),
)
if bias:
self.bias = mx.zeros((out_channels,))
self.padding = padding
self.dilation = dilation
self.stride = stride
def _extra_repr(self):
return (
f"{self.weight.shape[-1]}, {self.weight.shape[0]}, "
f"kernel_size={self.weight.shape[1]}, stride={self.stride}, "
f"padding={self.padding}, dilation={self.dilation}, "
f"bias={'bias' in self}"
)
def __call__(self, x):
y = mx.conv1d(x, self.weight, self.stride, self.padding, self.dilation)
if "bias" in self:
y = y + self.bias
return y
class Conv2d(Module):
"""Applies a 2-dimensional convolution over the multi-channel input image.
The channels are expected to be last i.e. the input shape should be ``NHWC`` where:
- ``N`` is the batch dimension
- ``H`` is the input image height
- ``W`` is the input image width
- ``C`` is the number of input channels
Args:
in_channels (int): The number of input channels.
out_channels (int): The number of output channels.
kernel_size (int or tuple): The size of the convolution filters.
stride (int or tuple, optional): The size of the stride when
applying the filter. Default: 1.
padding (int or tuple, optional): How many positions to 0-pad
the input with. Default: 0.
dilation (int or tuple, optional): The dilation of the convolution.
bias (bool, optional): If ``True`` add a learnable bias to the
output. Default: ``True``
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, tuple],
stride: Union[int, tuple] = 1,
padding: Union[int, tuple] = 0,
dilation: Union[int, tuple] = 1,
bias: bool = True,
):
super().__init__()
kernel_size, stride, padding = map(
lambda x: (x, x) if isinstance(x, int) else x,
(kernel_size, stride, padding),
)
scale = math.sqrt(1 / (in_channels * kernel_size[0] * kernel_size[1]))
self.weight = mx.random.uniform(
low=-scale,
high=scale,
shape=(out_channels, *kernel_size, in_channels),
)
if bias:
self.bias = mx.zeros((out_channels,))
self.padding = padding
self.stride = stride
self.dilation = dilation
def _extra_repr(self):
return (
f"{self.weight.shape[-1]}, {self.weight.shape[0]}, "
f"kernel_size={self.weight.shape[1:2]}, stride={self.stride}, "
f"padding={self.padding}, dilation={self.dilation}, "
f"bias={'bias' in self}"
)
def __call__(self, x):
y = mx.conv2d(x, self.weight, self.stride, self.padding, self.dilation)
if "bias" in self:
y = y + self.bias
return y
class Conv3d(Module):
"""Applies a 3-dimensional convolution over the multi-channel input image.
The channels are expected to be last i.e. the input shape should be ``NDHWC`` where:
- ``N`` is the batch dimension
- ``D`` is the input image depth
- ``H`` is the input image height
- ``W`` is the input image width
- ``C`` is the number of input channels
Args:
in_channels (int): The number of input channels.
out_channels (int): The number of output channels.
kernel_size (int or tuple): The size of the convolution filters.
stride (int or tuple, optional): The size of the stride when
applying the filter. Default: ``1``.
padding (int or tuple, optional): How many positions to 0-pad
the input with. Default: ``0``.
bias (bool, optional): If ``True`` add a learnable bias to the
output. Default: ``True``
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, tuple],
stride: Union[int, tuple] = 1,
padding: Union[int, tuple] = 0,
bias: bool = True,
):
super().__init__()
kernel_size, stride, padding = map(
lambda x: (x, x, x) if isinstance(x, int) else x,
(kernel_size, stride, padding),
)
scale = math.sqrt(
1 / (in_channels * kernel_size[0] * kernel_size[1] * kernel_size[2])
)
self.weight = mx.random.uniform(
low=-scale,
high=scale,
shape=(out_channels, *kernel_size, in_channels),
)
if bias:
self.bias = mx.zeros((out_channels,))
self.padding = padding
self.stride = stride
def _extra_repr(self):
return (
f"{self.weight.shape[-1]}, {self.weight.shape[0]}, "
f"kernel_size={self.weight.shape[1:3]}, stride={self.stride}, "
f"padding={self.padding}, bias={'bias' in self}"
)
def __call__(self, x):
y = mx.conv3d(x, self.weight, self.stride, self.padding)
if "bias" in self:
y = y + self.bias
return y