mlx/python/mlx/nn/layers/quantized.py

234 lines
7.7 KiB
Python

# Copyright © 2023-2024 Apple Inc.
import math
from typing import Callable, Optional
import mlx.core as mx
from mlx.nn.layers.base import Module
from mlx.nn.layers.embedding import Embedding
from mlx.nn.layers.linear import Linear
from mlx.utils import tree_map_with_path
def quantize(
model: Module,
group_size: int = 64,
bits: int = 4,
class_predicate: Optional[callable] = None,
):
"""Quantize the sub-modules of a module according to a predicate.
By default all :obj:`Linear` and :obj:`Embedding` layers will be
quantized. Note also, the module is updated in-place.
Args:
model (mlx.nn.Module): The model whose leaf modules may be quantized.
group_size (int): The quantization group size (see
:func:`mlx.core.quantize`). Default: ``64``.
bits (int): The number of bits per parameter (see
:func:`mlx.core.quantize`). Default: ``4``.
class_predicate (Optional[Callable]): A callable which receives the
:obj:`Module` path and :obj:`Module` itself and returns ``True`` if
it should be quantized and ``False`` otherwise. If ``None``, then
all linear and embedding layers are quantized. Default: ``None``.
"""
class_predicate = class_predicate or (
lambda _, m: isinstance(m, (Linear, Embedding))
)
def _maybe_quantize(path, m):
if class_predicate(path, m):
if isinstance(m, Linear):
return QuantizedLinear.from_linear(m, group_size, bits)
elif isinstance(m, Embedding):
return QuantizedEmbedding.from_embedding(m, group_size, bits)
else:
raise ValueError(f"Unable to quantize model of type {type(m)}")
else:
return m
leaves = model.leaf_modules()
leaves = tree_map_with_path(_maybe_quantize, leaves, is_leaf=Module.is_module)
model.update_modules(leaves)
class QuantizedEmbedding(Module):
"""The same as :obj:`Embedding` but with a quantized weight matrix.
:obj:`QuantizedEmbedding` also provides a :meth:`from_embedding`
classmethod to convert embedding layers to :obj:`QuantizedEmbedding`
layers.
Args:
num_embeddings (int): How many possible discrete tokens can we embed.
Usually called the vocabulary size.
dims (int): The dimensionality of the embeddings.
group_size (int, optional): The group size to use for the quantized
weight. See :func:`~mlx.core.quantize`. Default: ``64``.
bits (int, optional): The bit width to use for the quantized weight.
See :func:`~mlx.core.quantize`. Default: ``4``.
"""
def __init__(
self,
num_embeddings: int,
dims: int,
group_size: int = 64,
bits: int = 4,
):
super().__init__()
# Quantization config
self.group_size = group_size
self.bits = bits
# Initialize the quantized weight
scale = math.sqrt(1 / dims)
weight = mx.random.normal(shape=(num_embeddings, dims), scale=scale)
self.weight, self.scales, self.biases = mx.quantize(weight, group_size, bits)
self.num_embeddings = num_embeddings
self.dims = dims
# Freeze this model's parameters
self.freeze()
def __call__(self, x):
s = x.shape
x = x.flatten()
out = mx.dequantize(
self["weight"][x],
scales=self["scales"][x],
biases=self["biases"][x],
group_size=self.group_size,
bits=self.bits,
)
return out.reshape(*s, -1)
def as_linear(self, x):
"""
Call the quantized embedding layer as a quantized linear layer.
Use this for example when input embedding and output projection
weights are tied.
"""
return mx.quantized_matmul(
x,
self["weight"],
scales=self["scales"],
biases=self["biases"],
transpose=True,
group_size=self.group_size,
bits=self.bits,
)
def _extra_repr(self):
return (
f"{self.num_embeddings}, {self.dims}, "
f"group_size={self.group_size}, bits={self.bits}"
)
@classmethod
def from_embedding(
cls, embedding_layer: Embedding, group_size: int = 64, bits: int = 4
):
"""Create a :obj:`QuantizedEmbedding` layer from an :obj:`Embedding` layer."""
embedding_dims, dims = embedding_layer.weight.shape
ql = cls(embedding_dims, dims, group_size, bits)
ql.weight, ql.scales, ql.biases = mx.quantize(
embedding_layer.weight, group_size, bits
)
return ql
class QuantizedLinear(Module):
"""Applies an affine transformation to the input using a quantized weight matrix.
It is the quantized equivalent of :class:`mlx.nn.Linear`. For now its
parameters are frozen and will not be included in any gradient computation
but this will probably change in the future.
:obj:`QuantizedLinear` also provides a classmethod :meth:`from_linear` to
convert linear layers to :obj:`QuantizedLinear` layers.
Args:
input_dims (int): The dimensionality of the input features.
output_dims (int): The dimensionality of the output features.
bias (bool, optional): If set to ``False`` then the layer will not use
a bias. Default: ``True``.
group_size (int, optional): The group size to use for the quantized
weight. See :func:`~mlx.core.quantize`. Default: ``64``.
bits (int, optional): The bit width to use for the quantized weight.
See :func:`~mlx.core.quantize`. Default: ``4``.
"""
def __init__(
self,
input_dims: int,
output_dims: int,
bias: bool = True,
group_size: int = 64,
bits: int = 4,
):
super().__init__()
# Quantization config
self.group_size = group_size
self.bits = bits
# Initialize the quantized weight
scale = math.sqrt(1 / input_dims)
weight = mx.random.uniform(
low=-scale,
high=scale,
shape=(output_dims, input_dims),
)
self.weight, self.scales, self.biases = mx.quantize(weight, group_size, bits)
# And bias if needed
if bias:
self.bias = mx.zeros((output_dims,))
# Freeze this model's parameters
self.freeze()
def unfreeze(self, *args, **kwargs):
"""Wrap unfreeze so that we unfreeze any layers we might contain but
our parameters will remain frozen."""
super().unfreeze(*args, **kwargs)
self.freeze(recurse=False)
def _extra_repr(self):
out_dims, in_dims = self.weight.shape
in_dims *= 32 // self.bits
return (
f"input_dims={in_dims}, output_dims={out_dims}, bias={'bias' in self},"
f"group_size={self.group_size}, bits={self.bits}"
)
def __call__(self, x):
x = mx.quantized_matmul(
x,
self["weight"],
scales=self["scales"],
biases=self["biases"],
transpose=True,
group_size=self.group_size,
bits=self.bits,
)
if "bias" in self:
x = x + self["bias"]
return x
@classmethod
def from_linear(cls, linear_layer: Linear, group_size: int = 64, bits: int = 4):
"""Create a :obj:`QuantizedLinear` layer from a :obj:`Linear` layer."""
output_dims, input_dims = linear_layer.weight.shape
ql = cls(input_dims, output_dims, False, group_size, bits)
ql.weight, ql.scales, ql.biases = mx.quantize(
linear_layer.weight, group_size, bits
)
if "bias" in linear_layer:
ql.bias = linear_layer.bias
return ql