mlx/mlx/backend/metal/compiled.cpp
Awni Hannun 9f0d5c12fc
Fully wrap the command encoder (#1572)
* fully wrap the command encoder

* use consistent style + fix extensions
2024-11-08 11:50:21 -08:00

451 lines
14 KiB
C++

// Copyright © 2023-2024 Apple Inc.
#include <sstream>
#include "mlx/backend/common/compiled.h"
#include "mlx/backend/common/utils.h"
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/jit/includes.h"
#include "mlx/backend/metal/utils.h"
#include "mlx/graph_utils.h"
#include "mlx/primitives.h"
#include "mlx/utils.h"
namespace mlx::core {
constexpr int WORK_PER_THREAD = 4;
inline void build_kernel(
std::ostream& os,
const std::string& kernel_name,
const std::vector<array>& inputs,
const std::vector<array>& outputs,
const std::vector<array>& tape,
const std::unordered_set<uintptr_t>& constant_ids,
bool contiguous,
int ndim,
bool dynamic_dims,
bool use_big_index = false,
int work_per_thread = 1) {
// All outputs should have the exact same shape and will be row contiguous
auto output_shape = outputs[0].shape();
auto output_strides = outputs[0].strides();
// Constants are scalars that are captured by value and cannot change
auto is_constant = [&constant_ids](const array& x) {
return constant_ids.find(x.id()) != constant_ids.end();
};
NodeNamer namer;
bool add_indices = false;
int cnt = 0;
// Start the kernel
os << "[[host_name(\"" << kernel_name << "\")]]\n"
<< "[[kernel]] void " << kernel_name << "(\n";
// Add the input arguments
for (auto& x : inputs) {
auto& xname = namer.get_name(x);
// Skip constants from the input list
if (is_constant(x)) {
continue;
}
// Scalars and contiguous need no strides
if (is_scalar(x) || contiguous) {
os << " device const " << get_type_string(x.dtype()) << "* " << xname
<< " [[buffer(" << cnt++ << ")]],\n";
} else {
add_indices = true;
os << " device const " << get_type_string(x.dtype()) << "* " << xname
<< " [[buffer(" << cnt++ << ")]],\n";
}
}
if (add_indices) {
os << " constant const size_t* in_strides [[buffer(" << cnt++
<< ")]],\n";
}
// Add the output arguments
for (auto& x : outputs) {
os << " device " << get_type_string(x.dtype()) << "* "
<< namer.get_name(x) << " [[buffer(" << cnt++ << ")]],\n";
}
// Add output strides and shape to extract the indices.
if (!contiguous) {
os << " constant const size_t* output_strides [[buffer(" << cnt++
<< ")]],\n"
<< " constant const int* output_shape [[buffer(" << cnt++ << ")]],\n";
}
if (dynamic_dims) {
os << " constant const int& ndim [[buffer(" << cnt++ << ")]],\n";
}
// The thread index in the whole grid
os << " uint3 pos [[thread_position_in_grid]],\n"
<< " uint3 grid [[threads_per_grid]]) {\n";
if (use_big_index) {
// This is only used for contiguous kernels which don't have
// a third grid dimension
os << " size_t index = pos.x + grid.x * size_t(pos.y);\n";
} else if (work_per_thread > 1) {
os << " constexpr int N_ = " << std::to_string(work_per_thread) << ";\n"
<< " int xshape = output_shape["
<< (dynamic_dims ? "ndim - 1" : std::to_string(ndim - 1)) << "];\n"
<< " size_t index = N_ * pos.x + xshape * (pos.y + size_t(grid.y) * pos.z);\n";
} else {
os << " size_t index = pos.x + grid.x * (pos.y + size_t(grid.y) * pos.z);\n";
}
// Read constant / contiguous inputs in tmps
std::vector<array> nc_inputs;
for (int i = 0; i < inputs.size(); ++i) {
auto& x = inputs[i];
auto& xname = namer.get_name(x);
if (is_constant(x)) {
auto type_str = get_type_string(x.dtype());
os << " auto tmp_" << xname << " = static_cast<"
<< get_type_string(x.dtype()) << ">(";
print_constant(os, x);
os << ");\n";
} else if (is_scalar(x)) {
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = "
<< xname << "[0];\n";
} else if (contiguous) {
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = "
<< xname << "[index];\n";
} else {
nc_inputs.push_back(x);
}
}
// Initialize the indices for non-contiguous inputs
for (int i = 0; i < nc_inputs.size(); ++i) {
auto& xname = namer.get_name(nc_inputs[i]);
if (ndim == 1) {
int offset = i * ndim;
os << " size_t index_" << xname << " = elem_to_loc_1(pos.x, "
<< "in_strides[" << offset << "]);\n";
} else if (ndim == 2) {
int offset = i * ndim;
os << " size_t index_" << xname << " = elem_to_loc_2({pos.x, pos.y}, "
<< "in_strides + " << offset << ");\n";
} else if (ndim == 3) {
int offset = i * ndim;
os << " size_t index_" << xname << " = elem_to_loc_3(pos, "
<< "in_strides + " << offset << ");\n";
} else if (!dynamic_dims) {
int offset = i * ndim;
os << " size_t index_" << xname << " = N_ * pos.x * in_strides["
<< offset + ndim - 1 << "]"
<< " + pos.y * in_strides[" << offset + ndim - 2 << "];\n";
} else {
os << " size_t index_" << xname << " = N_ * pos.x * in_strides[ndim * "
<< i << " + ndim - 1]"
<< " + pos.y * in_strides[ndim * " << i << " + ndim - 2];\n";
}
}
if (!nc_inputs.empty() && (ndim > 3 || dynamic_dims)) {
os << " uint zpos = pos.z;\n";
if (dynamic_dims) {
os << " for (int d = ndim - 3; d >= 0; --d) {\n";
} else {
os << " for (int d = " << ndim - 3 << "; d >= 0; --d) {\n";
}
os << " uint l = zpos % output_shape[d];\n";
for (int i = 0; i < nc_inputs.size(); ++i) {
auto& xname = namer.get_name(nc_inputs[i]);
os << " index_" << xname << " += ";
if (dynamic_dims) {
os << "l * in_strides[" << i << " * ndim + d];\n";
} else {
os << "l * in_strides[" << i * ndim << " + d];\n";
}
}
os << " zpos /= output_shape[d];\n }\n";
}
// Open per-thread loop
if (work_per_thread > 1) {
os << " for (int i = 0; i < N_ && (int(N_ * pos.x) + i) < xshape; ++i) {\n";
}
// Read non-contiguous inputs into tmps
for (int i = 0; i < nc_inputs.size(); ++i) {
auto& x = nc_inputs[i];
auto& xname = namer.get_name(x);
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = "
<< xname << "[index_" << xname << "];\n";
}
// Actually write the computation
for (auto& x : tape) {
os << " " << get_type_string(x.dtype()) << " tmp_" << namer.get_name(x)
<< " = ";
if (is_static_cast(x.primitive())) {
os << "static_cast<" << get_type_string(x.dtype()) << ">(tmp_"
<< namer.get_name(x.inputs()[0]) << ");\n";
} else {
x.primitive().print(os);
os << "()(";
for (int i = 0; i < x.inputs().size() - 1; i++) {
os << "tmp_" << namer.get_name(x.inputs()[i]) << ", ";
}
os << "tmp_" << namer.get_name(x.inputs().back()) << ");\n";
}
}
// Write the outputs from tmps
for (auto& x : outputs) {
os << " " << namer.get_name(x) << "[index] = tmp_" << namer.get_name(x)
<< ";\n";
}
// Increment indices and close per thread loop
if (work_per_thread > 1) {
for (int i = 0; i < nc_inputs.size(); ++i) {
auto& x = nc_inputs[i];
auto& xname = namer.get_name(x);
if (!dynamic_dims) {
os << " index_" << xname << " += "
<< "in_strides[" << i * ndim + ndim - 1 << "];\n";
} else {
os << " index_" << xname << " += "
<< "in_strides[" << i << " * ndim + ndim - 1];\n";
}
}
os << " index++;\n }\n";
}
// Finish the kernel
os << "}\n";
if (cnt > 31) {
std::ostringstream msg;
msg << "[compile] Too many inputs/outputs fused in the Metal Compiled "
<< "primitive which exhausted the available argument buffers for "
<< "the kernel. Please file an issue with the function that results "
<< "in this error. The name of the kernel is '" << kernel_name << "'";
throw std::runtime_error(msg.str());
}
}
void Compiled::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
// Make the name for the kernel library
if (kernel_lib_.empty()) {
kernel_lib_ = build_lib_name(inputs_, outputs_, tape_, constant_ids_);
}
// Get the kernel if someone else built it already
auto& s = stream();
auto& d = metal::device(s.device);
auto lib = d.get_library(kernel_lib_, [&]() {
std::ostringstream kernel;
kernel << metal::utils() << metal::unary_ops() << metal::binary_ops()
<< metal::ternary_ops();
build_kernel(
kernel,
kernel_lib_ + "_contiguous",
inputs_,
outputs_,
tape_,
constant_ids_,
/* contiguous = */ true,
/* ndim = */ 0,
/* dynamic_dims = */ false);
build_kernel(
kernel,
kernel_lib_ + "_contiguous_big",
inputs_,
outputs_,
tape_,
constant_ids_,
/* contiguous = */ true,
/* ndim = */ 0,
/* dynamic_dims = */ false,
/* use_big_index = */ true);
for (int i = 1; i < 8; i++) {
build_kernel(
kernel,
kernel_lib_ + "_strided_" + std::to_string(i),
inputs_,
outputs_,
tape_,
constant_ids_,
/* contiguous = */ false,
/* ndim = */ i,
/* dynamic_dims = */ false,
/* use_big_index = */ false,
/* work_per_thread = */ i > 3 ? WORK_PER_THREAD : 1);
}
build_kernel(
kernel,
kernel_lib_ + "_strided_dynamic",
inputs_,
outputs_,
tape_,
constant_ids_,
/* contiguous = */ false,
/* ndim = */ 0,
/* dynamic_dims = */ true,
/* use_big_index = */ false,
/* work_per_thread = */ WORK_PER_THREAD);
return kernel.str();
});
// Figure out which kernel we are using
auto& output_shape = outputs[0].shape();
bool contiguous = compiled_check_contiguity(inputs, output_shape);
// Collapse contiguous dims to route to a faster kernel if possible. Also
// handle all broadcasting.
std::vector<std::vector<size_t>> initial_strides;
initial_strides.push_back(outputs[0].strides());
std::vector<int> shape;
std::vector<std::vector<size_t>> strides;
if (!contiguous) {
for (int i = 0; i < inputs.size(); i++) {
// Skip constants.
if (constant_ids_.find(inputs_[i].id()) != constant_ids_.end()) {
continue;
}
auto& x = inputs[i];
// Skip scalar inputs.
if (is_scalar(x)) {
continue;
}
// Broadcast the inputs to the output shape.
std::vector<size_t> xstrides;
int j = 0;
for (; j < output_shape.size() - x.ndim(); j++) {
if (output_shape[j] == 1) {
xstrides.push_back(outputs[0].strides()[j]);
} else {
xstrides.push_back(0);
}
}
for (int i = 0; i < x.ndim(); i++, j++) {
if (x.shape(i) == 1) {
if (output_shape[j] == 1) {
xstrides.push_back(outputs[0].strides()[j]);
} else {
xstrides.push_back(0);
}
} else {
xstrides.push_back(x.strides()[i]);
}
}
initial_strides.push_back(std::move(xstrides));
}
std::tie(shape, strides) =
collapse_contiguous_dims(output_shape, initial_strides, INT32_MAX);
}
bool use_2d = false;
if (contiguous) {
size_t max_size = 0;
for (auto& in : inputs) {
max_size = std::max(max_size, in.data_size());
}
use_2d = (max_size > UINT32_MAX);
}
// Get the kernel from the lib
int ndim = shape.size();
bool dynamic = ndim >= 8;
auto kernel_name = kernel_lib_ + (contiguous ? "_contiguous" : "_strided_");
if (!contiguous) {
if (dynamic) {
kernel_name += "dynamic";
} else {
kernel_name += std::to_string(shape.size());
}
} else if (use_2d) {
kernel_name += "_big";
}
auto kernel = d.get_kernel(kernel_name, lib);
auto& compute_encoder = d.get_command_encoder(s.index);
compute_encoder.set_compute_pipeline_state(kernel);
// Put the inputs in
int cnt = 0;
int stride_idx = 1; // idx 0 is the output strides
std::vector<size_t> in_strides;
for (int i = 0; i < inputs.size(); i++) {
if (constant_ids_.find(inputs_[i].id()) != constant_ids_.end()) {
continue;
}
auto& x = inputs[i];
compute_encoder.set_input_array(x, cnt++);
if (!contiguous && !is_scalar(x)) {
in_strides.insert(
in_strides.end(),
strides[stride_idx].begin(),
strides[stride_idx].end());
stride_idx++;
}
}
if (!in_strides.empty()) {
compute_encoder.set_vector_bytes(in_strides, cnt++);
}
compiled_allocate_outputs(
inputs, outputs, inputs_, constant_ids_, contiguous, true);
// Put the outputs in
for (auto& x : outputs) {
compute_encoder.set_output_array(x, cnt++);
}
// Put the output shape and strides in
if (!contiguous) {
compute_encoder.set_vector_bytes(strides[0], cnt++);
compute_encoder.set_vector_bytes(shape, cnt++);
}
// Put the number of dims in if it is dynamic
if (dynamic) {
compute_encoder.set_bytes(ndim, cnt++);
}
// Launch the kernel
if (contiguous) {
size_t nthreads = outputs[0].data_size();
MTL::Size group_dims(
std::min(nthreads, kernel->maxTotalThreadsPerThreadgroup()), 1, 1);
MTL::Size grid_dims = use_2d
? get_2d_grid_dims(outputs[0].shape(), outputs[0].strides())
: MTL::Size(nthreads, 1, 1);
compute_encoder.dispatch_threads(grid_dims, group_dims);
} else {
size_t dim0 = ndim > 0 ? shape[ndim - 1] : 1;
size_t dim1 = ndim > 1 ? shape[ndim - 2] : 1;
size_t rest = outputs[0].size() / (dim0 * dim1);
int work_per_thread = ndim > 3 ? WORK_PER_THREAD : 1;
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
NS::UInteger thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
int pow2;
if (thread_group_size == 1024) {
pow2 = 10;
} else if (thread_group_size > 512) {
pow2 = 9;
} else {
throw std::runtime_error("[Metal::compiled] Must use > 512 sized block");
}
auto group_dims = get_block_dims(dim0, dim1, rest, pow2);
MTL::Size grid_dims = MTL::Size(dim0, dim1, rest);
compute_encoder.dispatch_threads(grid_dims, group_dims);
}
}
} // namespace mlx::core